Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Signal ; 14(680)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33906974

RESUMO

Protein function is regulated by posttranslational modifications (PTMs), among which reversible oxidation of cysteine residues has emerged as a key regulatory mechanism of cellular responses. Given the redox regulation of virus-host interactions, the identification of oxidized cysteine sites in cells is essential to understand the underlying mechanisms involved. Here, we present a proteome-wide identification of reversibly oxidized cysteine sites in oxidant-treated cells using a maleimide-based bioswitch method coupled to mass spectrometry analysis. We identified 2720 unique oxidized cysteine sites within 1473 proteins with distinct abundances, locations, and functions. Oxidized cysteine sites were found in numerous signaling pathways, many relevant to virus-host interactions. We focused on the oxidation of STING, the central adaptor of the innate immune type I interferon pathway, which is stimulated in response to the detection of cytosolic DNA by cGAS. We demonstrated the reversible oxidation of Cys148 and Cys206 of STING in cells. Molecular analyses led us to establish a model in which Cys148 oxidation is constitutive, whereas Cys206 oxidation is inducible by oxidative stress or by the natural ligand of STING, 2'3'-cGAMP. Our data suggest that the oxidation of Cys206 prevented hyperactivation of STING by causing a conformational change associated with the formation of inactive polymers containing intermolecular disulfide bonds. This finding should aid the design of therapies targeting STING that are relevant to autoinflammatory disorders, immunotherapies, and vaccines.


Assuntos
Cisteína , Proteínas de Membrana/metabolismo , Proteômica , Cisteína/metabolismo , Humanos , Oxirredução , Processamento de Proteína Pós-Traducional , Proteoma/genética , Proteoma/metabolismo
2.
Redox Biol ; 6: 9-18, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26177467

RESUMO

Oxidative stress is considered a causative factor in carcinogenesis, but also in the development of resistance to current chemotherapies. The appropriate usage of redox-modulating compounds is limited by the lack of knowledge of their impact on specific molecular pathways. Increased levels of the IKKε kinase, as a result of gene amplification or aberrant expression, are observed in a substantial number of breast carcinomas. IKKε not only plays a key role in cell transformation and invasiveness, but also in the development of resistance to tamoxifen. Here, we studied the effect of in vitro treatment with the redox-modulating triphenylmethane dyes, Gentian Violet and Brilliant Green, and nitroxide Tempol on IKKε expression and cell proliferation in the human breast cancer epithelial cell lines exhibiting amplification of IKKε, MCF-7 and ZR75.1. We show that Gentian Violet, Brilliant Green and Tempol significantly decrease intracellular superoxide anion levels and inhibit IKKε expression and cell viability. Treatment with Gentian Violet and Brilliant Green was associated with a reduced cyclin D1 expression and activation of caspase 3 and/or 7. Tempol decreased cyclin D1 expression in both cell lines, while activation of caspase 7 was only observed in MCF-7 cells. Silencing of the superoxide-generating NOX2 NADPH oxidase expressed in breast cancer cells resulted in the significant reduction of IKKε expression. Taken together, our results suggest that redox-modulating compounds targeting NOX2 could present a particular therapeutic interest in combination therapy against breast carcinomas exhibiting IKKε amplification.


Assuntos
Óxidos N-Cíclicos/farmacologia , Regulação Neoplásica da Expressão Gênica , Violeta Genciana/farmacologia , Quinase I-kappa B/genética , Glicoproteínas de Membrana/genética , NADPH Oxidases/genética , Compostos de Amônio Quaternário/farmacologia , Caspase 3/genética , Caspase 3/metabolismo , Caspase 7/genética , Caspase 7/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclina D1/genética , Ciclina D1/metabolismo , Feminino , Humanos , Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/metabolismo , Células MCF-7 , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/metabolismo , NADPH Oxidase 2 , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Oxirredução/efeitos dos fármacos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Marcadores de Spin , Superóxidos/antagonistas & inibidores , Superóxidos/metabolismo
3.
J Innate Immun ; 6(5): 650-62, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24800889

RESUMO

Retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) are the main cytosolic sensors of single-stranded RNA viruses, including paramyxoviruses, and are required to initiate a quick and robust innate antiviral response. Despite different ligand-binding properties, the consensus view is that RIG-I and MDA5 trigger common signal(s) to activate interferon regulatory factor 3 (IRF-3) and NF-κB, and downstream antiviral and proinflammatory cytokine expression. Here, we performed a thorough analysis of the temporal involvement of RIG-I and MDA5 in the regulation of IRF-3 during respiratory syncytial virus (RSV) infection. Based on specific RNA interference-mediated knockdown of RIG-I and MDA5 in A549 cells, we confirmed that RIG-I is critical for the initiation of IRF-3 phosphorylation, dimerization and downstream gene expression. On the other hand, our experiments yielded the first evidence that knockdown of MDA5 leads to early ubiquitination and proteasomal degradation of active IRF-3. Conversely, ectopic expression of MDA5 prolonged RIG-I-induced IRF-3 activation. Altogether, we provide novel mechanistic insight into the temporal involvement of RIG-I and MDA5 in the innate antiviral response. While RIG-I is essential for initial IRF-3 activation, engagement of induced MDA5 is essential to prevent early degradation of IRF-3, thereby sustaining IRF-3-dependent antiviral gene expression. MDA5 plays a similar role during Sendai virus infection suggesting that this model is not restricted to RSV amongst paramyxoviruses.


Assuntos
RNA Helicases DEAD-box/metabolismo , Células Epiteliais/imunologia , Fator Regulador 3 de Interferon/metabolismo , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Linhagem Celular , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , Células Epiteliais/virologia , Regulação da Expressão Gênica/genética , Humanos , Imunidade Inata/genética , Fator Regulador 3 de Interferon/genética , Helicase IFIH1 Induzida por Interferon , Fosforilação/genética , Proteólise , RNA Interferente Pequeno/genética , Receptores Imunológicos , Transdução de Sinais/genética , Ubiquitinação/genética
4.
Cell Res ; 23(5): 673-90, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23545780

RESUMO

Airway epithelial cells are key initial innate immune responders in the fight against respiratory viruses, primarily via the secretion of antiviral and proinflammatory cytokines that act in an autocrine/paracrine fashion to trigger the establishment of an antiviral state. It is currently thought that the early antiviral state in airway epithelial cells primarily relies on IFNß secretion and the subsequent activation of the interferon-stimulated gene factor 3 (ISGF3) transcription factor complex, composed of STAT1, STAT2 and IRF9, which regulates the expression of a panoply of interferon-stimulated genes encoding proteins with antiviral activities. However, the specific pathways engaged by the synergistic action of different cytokines during viral infections, and the resulting physiological outcomes are still ill-defined. Here, we unveil a novel delayed antiviral response in the airways, which is initiated by the synergistic autocrine/paracrine action of IFNß and TNFα, and signals through a non-canonical STAT2- and IRF9-dependent, but STAT1-independent cascade. This pathway ultimately leads to the late induction of the DUOX2 NADPH oxidase expression. Importantly, our study uncovers that the development of the antiviral state relies on DUOX2-dependent H2O2 production. Key antiviral pathways are often targeted by evasion strategies evolved by various pathogenic viruses. In this regard, the importance of the novel DUOX2-dependent antiviral pathway is further underlined by the observation that the human respiratory syncytial virus is able to subvert DUOX2 induction.


Assuntos
Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Interferon beta/metabolismo , NADPH Oxidases/metabolismo , Fator de Transcrição STAT2/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Antivirais/farmacologia , Comunicação Autócrina/efeitos dos fármacos , Linhagem Celular , Sinergismo Farmacológico , Oxidases Duais , Humanos , Peróxido de Hidrogênio/metabolismo , Imunidade Inata/efeitos dos fármacos , Interferon beta/genética , Interferon beta/farmacologia , NADPH Oxidases/genética , Comunicação Parácrina/efeitos dos fármacos , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Citoplasmático Pequeno/metabolismo , Receptor de Interferon alfa e beta/antagonistas & inibidores , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Vírus Sinciciais Respiratórios/metabolismo , Fator de Transcrição STAT1/metabolismo , Vírus Sendai/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA