Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genes Genet Syst ; 97(6): 285-295, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-36858512

RESUMO

Genome instability is a major cause of aging. In the budding yeast Saccharomyces cerevisiae, instability of the ribosomal RNA gene repeat (rDNA) is known to shorten replicative lifespan. In yeast, rDNA instability in an aging cell is associated with accumulation of extrachromosomal rDNA circles (ERCs) which titrate factors critical for lifespan maintenance. ERC accumulation is not detected in mammalian cells, where aging is linked to DNA damage. To distinguish effects of DNA damage from those of ERC accumulation on senescence, we re-analyzed a yeast strain with a replication initiation defect in the rDNA, which limits ERC multiplication. In aging cells of this strain (rARS-∆3) rDNA became unstable, as in wild-type cells, whereas significantly fewer ERCs accumulated. Single-cell aging analysis revealed that rARS-∆3 cells follow a linear survival curve and can have a wild-type replicative lifespan, although a fraction of the cells stopped dividing earlier than wild type. The doubling time of rARS-∆3 cells appears to increase in the final cell divisions. Our results suggest that senescence in rARS-∆3 is linked to the accumulation of DNA damage as in mammalian cells, rather than to elevated ERC level. Therefore, this strain should be a good model system to study ERC-independent aging.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Genes de RNAr , Senescência Celular/genética , DNA Ribossômico/genética , Proteínas de Saccharomyces cerevisiae/genética , Replicação do DNA/genética
2.
MicroPubl Biol ; 20222022.
Artigo em Inglês | MEDLINE | ID: mdl-36338152

RESUMO

Perception of oxidative stress in nematodes involves specific neurons expressing antioxidant enzymes. Here, we carefully characterized GFP knock-in lines for C. elegans peroxiredoxin PRDX-2 and thioredoxin TRX-1, and uncovered that left and right I2, PHA and ASJ neurons reproducibly express an asymmetric level of each enzyme. We observed that high-expressing neurons are in most cases associated with a particular side, indicating a directional rather than stochastic type of asymmetry. We propose that the biological relevance of this left-right asymmetry is to fine-tune H 2 O 2 or light sensing, which remains to be investigated.

3.
PLoS One ; 17(9): e0274226, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36173997

RESUMO

Environmental oxidative stress threatens cellular integrity and should therefore be avoided by living organisms. Yet, relatively little is known about environmental oxidative stress perception. Here, using microfluidics, we showed that like I2 pharyngeal neurons, the tail phasmid PHA neurons function as oxidative stress sensing neurons in C. elegans, but display different responses to H2O2 and light. We uncovered that different but related receptors, GUR-3 and LITE-1, mediate H2O2 signaling in I2 and PHA neurons. Still, the peroxiredoxin PRDX-2 is essential for both, and might promote H2O2-mediated receptor activation. Our work demonstrates that C. elegans can sense a broad range of oxidative stressors using partially distinct H2O2 signaling pathways in head and tail sensillae, and paves the way for further understanding of how the integration of these inputs translates into the appropriate behavior.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Proteínas de Caenorhabditis elegans/genética , Peróxido de Hidrogênio , Neurônios , Estresse Oxidativo , Peroxirredoxinas
4.
Elife ; 112022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35976090

RESUMO

Automating the extraction of meaningful temporal information from sequences of microscopy images represents a major challenge to characterize dynamical biological processes. So far, strong limitations in the ability to quantitatively analyze single-cell trajectories have prevented large-scale investigations to assess the dynamics of entry into replicative senescence in yeast. Here, we have developed DetecDiv, a microfluidic-based image acquisition platform combined with deep learning-based software for high-throughput single-cell division tracking. We show that DetecDiv can automatically reconstruct cellular replicative lifespans with high accuracy and performs similarly with various imaging platforms and geometries of microfluidic traps. In addition, this methodology provides comprehensive temporal cellular metrics using time-series classification and image semantic segmentation. Last, we show that this method can be further applied to automatically quantify the dynamics of cellular adaptation and real-time cell survival upon exposure to environmental stress. Hence, this methodology provides an all-in-one toolbox for high-throughput phenotyping for cell cycle, stress response, and replicative lifespan assays.


Assuntos
Aprendizado Profundo , Divisão Celular , Rastreamento de Células , Processamento de Imagem Assistida por Computador/métodos , Saccharomyces cerevisiae , Software , Análise de Sobrevida
5.
Bio Protoc ; 12(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35978570

RESUMO

Microorganisms have evolved adaptive strategies to respond to the autonomous degradation of their environment. Indeed, a growing culture progressively exhausts nutrients from its media and modifies its composition. Yet, how single cells react to these modifications remains difficult to study since it requires population-scale growth experiments to allow cell proliferation to have a collective impact on the environment, while monitoring the same individuals exposed to this environment for days. For this purpose, we have previously described an integrated microfluidic pipeline, based on continuous separation of the cells from the media and subsequent perfusion of the filtered media in an observation chamber containing isolated single cells. Here, we provide a detailed protocol to implement this methodology, including the setting up of the microfluidic system and the processing of timelapse images.

6.
EMBO J ; 41(15): e110271, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35735140

RESUMO

Nuclear pore complexes (NPCs) mediate communication between the nucleus and the cytoplasm, and regulate gene expression by interacting with transcription and mRNA export factors. Lysine acetyltransferases (KATs) promote transcription through acetylation of chromatin-associated proteins. We find that Esa1, the KAT subunit of the yeast NuA4 complex, also acetylates the nuclear pore basket component Nup60 to promote mRNA export. Acetylation of Nup60 recruits the mRNA export factor Sac3, the scaffolding subunit of the Transcription and Export 2 (TREX-2) complex, to the nuclear basket. The Esa1-mediated nuclear export of mRNAs in turn promotes entry into S phase, which is inhibited by the Hos3 deacetylase in G1 daughter cells to restrain their premature commitment to a new cell division cycle. This mechanism is not only limited to G1/S-expressed genes but also inhibits the expression of the nutrient-regulated GAL1 gene specifically in daughter cells. Overall, these results reveal how acetylation can contribute to the functional plasticity of NPCs in mother and daughter yeast cells. In addition, our work demonstrates dual gene expression regulation by the evolutionarily conserved NuA4 complex, at the level of transcription and at the stage of mRNA export by modifying the nucleoplasmic entrance to nuclear pores.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Acetilação , Transporte Ativo do Núcleo Celular/fisiologia , Ciclo Celular , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histona Desacetilases/metabolismo , Poro Nuclear/genética , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo
7.
Elife ; 112022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35373738

RESUMO

The nuclear pore complex (NPC) mediates nearly all exchanges between nucleus and cytoplasm, and in many species, it changes composition as the organism ages. However, how these changes arise and whether they contribute themselves to ageing is poorly understood. We show that SAGA-dependent attachment of DNA circles to NPCs in replicatively ageing yeast cells causes NPCs to lose their nuclear basket and cytoplasmic complexes. These NPCs were not recognized as defective by the NPC quality control machinery (SINC) and not targeted by ESCRTs. They interacted normally or more effectively with protein import and export factors but specifically lost mRNA export factors. Acetylation of Nup60 drove the displacement of basket and cytoplasmic complexes from circle-bound NPCs. Mutations preventing this remodeling extended the replicative lifespan of the cells. Thus, our data suggest that the anchorage of accumulating circles locks NPCs in a specialized state and that this process is intrinsically linked to the mechanisms by which ERCs promote ageing.


Assuntos
Poro Nuclear , Proteínas de Saccharomyces cerevisiae , DNA/metabolismo , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Elife ; 102021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34723791

RESUMO

The life cycle of microorganisms is associated with dynamic metabolic transitions and complex cellular responses. In yeast, how metabolic signals control the progressive choreography of structural reorganizations observed in quiescent cells during a natural life cycle remains unclear. We have developed an integrated microfluidic device to address this question, enabling continuous single-cell tracking in a batch culture experiencing unperturbed nutrient exhaustion to unravel the coordination between metabolic and structural transitions within cells. Our technique reveals an abrupt fate divergence in the population, whereby a fraction of cells is unable to transition to respiratory metabolism and undergoes a reversible entry into a quiescence-like state leading to premature cell death. Further observations reveal that nonmonotonous internal pH fluctuations in respiration-competent cells orchestrate the successive waves of protein superassemblies formation that accompany the entry into a bona fide quiescent state. This ultimately leads to an abrupt cytosolic glass transition that occurs stochastically long after proliferation cessation. This new experimental framework provides a unique way to track single-cell fate dynamics over a long timescale in a population of cells that continuously modify their ecological niche.


Assuntos
Ciclo Celular , Proliferação de Células , Saccharomyces cerevisiae/fisiologia , Análise de Célula Única
9.
EMBO J ; 40(16): e107913, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34191328

RESUMO

The formation of protein aggregates is a hallmark of neurodegenerative diseases. Observations on patient samples and model systems demonstrated links between aggregate formation and declining mitochondrial functionality, but causalities remain unclear. We used Saccharomyces cerevisiae to analyze how mitochondrial processes regulate the behavior of aggregation-prone polyQ protein derived from human huntingtin. Expression of Q97-GFP rapidly led to insoluble cytosolic aggregates and cell death. Although aggregation impaired mitochondrial respiration only slightly, it considerably interfered with the import of mitochondrial precursor proteins. Mutants in the import component Mia40 were hypersensitive to Q97-GFP, whereas Mia40 overexpression strongly suppressed the formation of toxic Q97-GFP aggregates both in yeast and in human cells. Based on these observations, we propose that the post-translational import of mitochondrial precursor proteins into mitochondria competes with aggregation-prone cytosolic proteins for chaperones and proteasome capacity. Mia40 regulates this competition as it has a rate-limiting role in mitochondrial protein import. Therefore, Mia40 is a dynamic regulator in mitochondrial biogenesis that can be exploited to stabilize cytosolic proteostasis.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Peptídeos/metabolismo , Agregação Patológica de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Linhagem Celular , Citosol/metabolismo , Humanos , Mitocôndrias/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Saccharomyces cerevisiae
10.
STAR Protoc ; 1(3): 100228, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33377118

RESUMO

The budding yeast Saccharomyces cerevisiae is an excellent model organism to dissect the maintenance and inheritance of phenotypes due to its asymmetric division. This requires following individual cells over time as they go through divisions to define pedigrees. Here, we provide a detailed protocol for collecting and analyzing time-lapse imaging data of yeast cells. The microfluidics protocol can achieve improved time resolution for single-cell tracking to enable characterization of maintenance and inheritance of phenotypes. For complete details on the use and execution of this protocol, please refer to Bheda et al. (2020a).


Assuntos
Rastreamento de Células/métodos , Microfluídica/métodos , Análise de Célula Única/métodos , Divisão Celular , Linhagem da Célula/fisiologia , Fenótipo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Imagem com Lapso de Tempo/métodos
11.
Mol Cell ; 78(5): 915-925.e7, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32392469

RESUMO

Transcriptional memory of gene expression enables adaptation to repeated stimuli across many organisms. However, the regulation and heritability of transcriptional memory in single cells and through divisions remains poorly understood. Here, we combined microfluidics with single-cell live imaging to monitor Saccharomyces cerevisiae galactokinase 1 (GAL1) expression over multiple generations. By applying pedigree analysis, we dissected and quantified the maintenance and inheritance of transcriptional reinduction memory in individual cells through multiple divisions. We systematically screened for loss- and gain-of-memory knockouts to identify memory regulators in thousands of single cells. We identified new loss-of-memory mutants, which affect memory inheritance into progeny. We also unveiled a gain-of-memory mutant, elp6Δ, and suggest that this new phenotype can be mediated through decreased histone occupancy at the GAL1 promoter. Our work uncovers principles of maintenance and inheritance of gene expression states and their regulators at the single-cell level.


Assuntos
Galactoquinase/genética , Regulação Fúngica da Expressão Gênica/genética , Transcrição Gênica/genética , Galactose/metabolismo , Expressão Gênica/genética , Genes Fúngicos/genética , Hereditariedade/genética , Histonas/metabolismo , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Célula Única/métodos
12.
Elife ; 82019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31518229

RESUMO

Loss of proteostasis and cellular senescence are key hallmarks of aging, but direct cause-effect relationships are not well understood. We show that most yeast cells arrest in G1 before death with low nuclear levels of Cln3, a key G1 cyclin extremely sensitive to chaperone status. Chaperone availability is seriously compromised in aged cells, and the G1 arrest coincides with massive aggregation of a metastable chaperone-activity reporter. Moreover, G1-cyclin overexpression increases lifespan in a chaperone-dependent manner. As a key prediction of a model integrating autocatalytic protein aggregation and a minimal Start network, enforced protein aggregation causes a severe reduction in lifespan, an effect that is greatly alleviated by increased expression of specific chaperones or cyclin Cln3. Overall, our data show that proteostasis breakdown, by compromising chaperone activity and G1-cyclin function, causes an irreversible arrest in G1, configuring a molecular pathway postulating proteostasis decay as a key contributing effector of cell senescence.


Assuntos
Pontos de Checagem do Ciclo Celular , Senescência Celular , Chaperonas Moleculares/metabolismo , Proteostase , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Ciclinas/metabolismo
13.
PLoS One ; 14(8): e0220694, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31461461

RESUMO

A large number of genetic studies in yeast rely on the use of expression vectors. To facilitate the experimental approach of these studies, several collections of expression vectors have been generated (YXplac, pRS series, etc.). Subsequently, these collections have been expanded by adding more diversity to many of the plasmid features, including new selection markers and new promoter sequences. However, the ever growing number of plasmid features makes it unrealistic for research labs to maintain an up-to-date collection of plasmids. Here, we developed the COSPLAY toolbox: a Golden Gate approach based on the scheme of a simple modular plasmid that recapitulates and completes all the properties of the pRS plasmids. The COSPLAY toolbox contains a basal collection of individual functional modules. Moreover, we standardized a simple and rapid, software-assisted protocol which facilitates the addition of new personalized modules. Finally, our toolbox includes the possibility to select a genomic target location and to perform a single copy integration of the expression vector.


Assuntos
Clonagem Molecular/métodos , Vetores Genéticos/genética , Plasmídeos/genética , Saccharomyces cerevisiae/genética , Biblioteca Gênica , Genes Reporter , Engenharia Genética/métodos , Software , Transformação Genética
14.
Cell Rep ; 28(2): 408-422.e4, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31291577

RESUMO

Budding yeast cells undergo a limited number of divisions before they enter senescence and die. Despite recent mechanistic advances, whether and how molecular events are temporally and causally linked during the transition to senescence remain elusive. Here, using real-time observation of the accumulation of extrachromosomal rDNA circles (ERCs) in single cells, we provide evidence that ERCs build up rapidly with exponential kinetics well before any physiological decline. We then show that ERCs fuel a massive increase in ribosomal RNA (rRNA) levels in the nucleolus, which do not mature into functional ribosomes. This breakdown in nucleolar coordination is followed by a loss of nuclear homeostasis, thus defining a chronology of causally related events leading to cell death. A computational analysis supports a model in which a series of age-independent processes lead to an age-dependent increase in cell mortality, hence explaining the emergence of aging in budding yeast.


Assuntos
DNA Ribossômico/genética , Saccharomycetales/genética , Transcrição Gênica/genética , Senescência Celular , Homeostase
15.
Micromachines (Basel) ; 10(5)2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31075890

RESUMO

Single-cell analysis commonly requires the confinement of cell suspensions in an analysis chamber or the precise positioning of single cells in small channels. Hydrodynamic flow focusing has been broadly utilized to achieve stream confinement in microchannels for such applications. As imaging flow cytometry gains popularity, the need for imaging-compatible microfluidic devices that allow for precise confinement of single cells in small volumes becomes increasingly important. At the same time, high-throughput single-cell imaging of cell populations produces vast amounts of complex data, which gives rise to the need for versatile algorithms for image analysis. In this work, we present a microfluidics-based platform for single-cell imaging in-flow and subsequent image analysis using variational autoencoders for unsupervised characterization of cellular mixtures. We use simple and robust Y-shaped microfluidic devices and demonstrate precise 3D particle confinement towards the microscope slide for high-resolution imaging. To demonstrate applicability, we use these devices to confine heterogeneous mixtures of yeast species, brightfield-image them in-flow and demonstrate fully unsupervised, as well as few-shot classification of single-cell images with 88% accuracy.

17.
Genes Dev ; 32(23-24): 1499-1513, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30463903

RESUMO

In cells lacking telomerase, telomeres gradually shorten during each cell division to reach a critically short length, permanently activate the DNA damage checkpoint, and trigger replicative senescence. The increase in genome instability that occurs as a consequence may contribute to the early steps of tumorigenesis. However, because of the low frequency of mutations and the heterogeneity of telomere-induced senescence, the timing and mechanisms of genome instability increase remain elusive. Here, to capture early mutation events during replicative senescence, we used a combined microfluidic-based approach and live-cell imaging in yeast. We analyzed DNA damage checkpoint activation in consecutive cell divisions of individual cell lineages in telomerase-negative yeast cells and observed that prolonged checkpoint arrests occurred frequently in telomerase-negative lineages. Cells relied on the adaptation to the DNA damage pathway to bypass the prolonged checkpoint arrests, allowing further cell divisions despite the presence of unrepaired DNA damage. We demonstrate that the adaptation pathway is a major contributor to the genome instability induced during replicative senescence. Therefore, adaptation plays a critical role in shaping the dynamics of genome instability during replicative senescence.


Assuntos
Adaptação Fisiológica/genética , Pontos de Checagem do Ciclo Celular/genética , Dano ao DNA/genética , Instabilidade Genômica/genética , Saccharomyces cerevisiae/genética , Reparo do DNA , Genoma Fúngico/genética , Técnicas Analíticas Microfluídicas , Mutação , Imagem Óptica , Saccharomyces cerevisiae/enzimologia , Telomerase/genética
18.
Methods Cell Biol ; 147: 29-40, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30165960

RESUMO

The generation of complex temporal stress patterns may be instrumental to investigate the adaptive properties of individual cells submitted to environmental stress on physiological timescale. However, it is difficult to accurately control stress concentration over time in bulk experiments. Here, we describe a microfluidics-based protocol to induce tightly controllable H2O2 stress in budding yeast while constantly monitoring cell growth with single cell resolution over multi-generation timescale. Moreover, we describe a simple methodology to produce ramping H2O2 stress to investigate the homeostatic properties of the H2O2 scavenging system.


Assuntos
Técnicas Analíticas Microfluídicas/métodos , Estresse Mecânico , Dimetilpolisiloxanos/química , Peróxido de Hidrogênio/química , Fatores de Tempo
19.
Elife ; 72018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-29972352

RESUMO

Coordination of cell growth with division is essential for proper cell function. In budding yeast, although some molecular mechanisms responsible for cell size control during G1 have been elucidated, the mechanism by which cell size homeostasis is established remains to be discovered. Here, we developed a new technique based on quantification of histone levels to monitor cell cycle progression in individual cells with unprecedented accuracy. Our analysis establishes the existence of a mechanism controlling bud size in G2/M that prevents premature onset of anaphase, and controls the overall size variability. While most G1 mutants do not display impaired size homeostasis, mutants in which cyclin B-Cdk regulation is altered display large size variability. Our study thus demonstrates that size homeostasis is not controlled by a G1-specific mechanism alone but is likely to be an emergent property resulting from the integration of several mechanisms that coordinate cell and bud growth with division.


Assuntos
Ciclo Celular , Homeostase , Saccharomyces cerevisiae/citologia , Anáfase , Ciclo Celular/genética , Ciclina B/metabolismo , Fluorescência , Corantes Fluorescentes/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Histonas/biossíntese , Hidroxiureia/farmacologia , Metáfase , Viabilidade Microbiana , Microfluídica , Modelos Biológicos , Mutação/genética , Saccharomyces cerevisiae/genética , Imagem com Lapso de Tempo
20.
Elife ; 62017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28418333

RESUMO

Homeostatic systems that rely on genetic regulatory networks are intrinsically limited by the transcriptional response time, which may restrict a cell's ability to adapt to unanticipated environmental challenges. To bypass this limitation, cells have evolved mechanisms whereby exposure to mild stress increases their resistance to subsequent threats. However, the mechanisms responsible for such adaptive homeostasis remain largely unknown. Here, we used live-cell imaging and microfluidics to investigate the adaptive response of budding yeast to temporally controlled H2O2 stress patterns. We demonstrate that acquisition of tolerance is a systems-level property resulting from nonlinearity of H2O2 scavenging by peroxiredoxins and our study reveals that this regulatory scheme induces a striking hormetic effect of extracellular H2O2 stress on replicative longevity. Our study thus provides a novel quantitative framework bridging the molecular architecture of a cellular homeostatic system to the emergence of nonintuitive adaptive properties.


Assuntos
Retroalimentação , Peróxido de Hidrogênio/toxicidade , Oxidantes/toxicidade , Estresse Oxidativo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/fisiologia , Estresse Fisiológico , Microscopia Intravital , Microfluídica , Imagem Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA