Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 14(22): 5842-5871, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37293660

RESUMO

Biological species, including reactive oxygen species (ROS), reactive sulfur species (RSS), reactive nitrogen species (RNS), F-, Pd2+, Cu2+, Hg2+, and others, are crucial for the healthy functioning of cells in living organisms. However, their aberrant concentration can result in various serious diseases. Therefore, it is essential to monitor biological species in cellular organelles such as the cell membrane, mitochondria, lysosome, endoplasmic reticulum, Golgi apparatus, and nucleus. Among various fluorescent probes for species detection within the organelles, ratiometric fluorescent probes have drawn special attention as a potential way to get beyond the drawbacks of intensity-based probes. This method depends on measuring the intensity change of two emission bands (caused by an analyte), which produces an efficient internal referencing that increases the detection's sensitivity. This review article discusses the literature publications (from 2015 to 2022) on organelle-targeting ratiometric fluorescent probes, the general strategies, the detecting mechanisms, the broad scope, and the challenges currently faced by fluorescent probes.

2.
Nanomicro Lett ; 15(1): 54, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36795339

RESUMO

Agro seeds are vulnerable to environmental stressors, adversely affecting seed vigor, crop growth, and crop productivity. Different agrochemical-based seed treatments enhance seed germination, but they can also cause damage to the environment; therefore, sustainable technologies such as nano-based agrochemicals are urgently needed. Nanoagrochemicals can reduce the dose-dependent toxicity of seed treatment, thereby improving seed viability and ensuring the controlled release of nanoagrochemical active ingredients However, the applications of nanoagrochemicals to plants in the field raise concerns about nanomaterial safety, exposure levels, and toxicological implications to the environment and human health. In the present comprehensive review, the development, scope, challenges, and risk assessments of nanoagrochemicals on seed treatment are discussed. Moreover, the implementation obstacles for nanoagrochemicals use in seed treatments, their commercialization potential, and the need for policy regulations to assess possible risks are also discussed. Based on our knowledge, this is the first time that we have presented legendary literature to readers in order to help them gain a deeper understanding of upcoming nanotechnologies that may enable the development of future generation seed treatment agrochemical formulations, their scope, and potential risks associated with seed treatment.

3.
Antioxidants (Basel) ; 11(5)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35624869

RESUMO

Rubia cordifolia L. (Rubiaceae) is an important plant in Indian and Chinese medical systems. Extracts prepared from the root, stem and leaf have been used traditionally for the management of various diseases. Some of the known effects are anti-inflammation, neuroprotection, anti-proliferation, immunomodulation and anti-tumor. A comparative account of the extracts derived from different organs that lead to the identification of the most suitable solvent is lacking. We explored the presence of phytochemicals, antioxidant activity and anti-proliferative properties of a variety of solvent-based extracts of root, and methanol extracts of stem and leaf of R. cordifolia L. The antioxidant potential was determined by DPPH, hydrogen peroxide, nitric oxide and total antioxidant assays. The anti-proliferative nature was evaluated by MTT assay on HeLa, ME-180 and HepG2 cells. The composition of the extracts was determined by UPLC-UV-MS. We found that the root extracts had the presence of higher amounts of antioxidants over the stem and leaf extracts. The root extracts prepared in methanol exhibited the highest cytotoxicity in HepG2 cells. The main compounds identified through UPLC-UV-MS of the methanol extract give credibility to the previous results. Our comprehensive study corroborates the preference given to the root over the stem and leaf for extract preparation. In conclusion, we identified the methanol extract of the root to be the most suited to have bioactivity with anti-cancer potential.

4.
Biomater Adv ; 134: 112592, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35527134

RESUMO

The present study demonstrates lignin (L), fragments of lignin (FL), and oxidized fragmented lignin (OFL) as templates for the synthesis of zinc oxide nanoparticles (ZnO NPs) viz., lignin-ZnO (L-ZnO), hierarchical FL-ZnO, and OFL-ZnO NPs. The X-ray diffraction patterns confirmed the formation of phase pure ZnO NPs with a hexagonal wurtzite structure. Electron microscopy confirmed the hierarchical structures with one-dimensional arrays of ZnO NPs with an average particle diameter of 40 nm. The as-synthesized L-ZnO, FL-ZnO, and OFL-ZnO NPs were tested in-vitro for growth and virulence inhibition (morphogenesis and biofilm) in Candida albicans. L-ZnO, FL-ZnO, and OFL-ZnO NPs all inhibited growth and virulence. Growth and virulence inhibitions were highest (more than 90%, respectively at 125, 31.2, and 62.5 µg/mL) in presence of FL-ZnO NPs, indicating that the hierarchical FL-ZnO NPs were potent growth and virulence inhibiting agent than non-hierarchical ZnO NPs. Furthermore, the real-time polymerase chain (RT-PCR) was used to study the virulence inhibition molecular mechanisms of L-ZnO, FL-ZnO, and OFL-ZnO NPs. RT-PCR results showed that the downregulation of phr1, phr2, efg1, hwp1, ras1, als3 and als4, and the upregulation of bcy1, nrg1, and tup1 genes inhibited the virulence in C. albicans. Lastly, we also performed in-vitro test cell cytotoxicity on the cell line, mouse embryo 3T3L1, and in-vivo toxicity on Rats, which showed that FL-ZnO NPs were biocompatible and nontoxic.


Assuntos
Biofilmes , Candida albicans , Nanopartículas , Óxido de Zinco , Animais , Biofilmes/efeitos dos fármacos , Candida albicans/metabolismo , Lignina , Camundongos , Nanopartículas/química , Ratos , Óxido de Zinco/farmacologia
5.
RSC Adv ; 12(17): 10467-10488, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35425017

RESUMO

Seeds are vulnerable to physical and biological stresses during the germination process. Seed priming strategies can alleviate such stresses. Seed priming is a technique of treating and drying seeds prior to germination in order to accelerate the metabolic process of germination. Multiple benefits are offered by seed priming techniques, such as reducing fertilizer use, accelerating seed germination, and inducing systemic resistance in plants, which are both cost-effective and eco-friendly. For seed priming, cold plasma (CP)-mediated priming could be an innovative alternative to synthetic chemical treatments. CP priming is an eco-friendly, safe and economical, yet relatively less explored technique towards the development of seed priming. In this review, we discussed in detail the application of CP technology for seed priming to enhance germination, the quality of seeds, and the production of crops in a sustainable manner. Additionally, the combination treatment of CP with nanoparticle (NP) priming is also discussed. The large numbers of parameters need to be monitored and optimized during CP treatment to achieve the desired priming results. Here, we discussed a new perspective of machine learning for modeling plasma treatment parameters in agriculture for the development of synergistic protocols for different types of seed priming.

6.
Bioorg Chem ; 120: 105597, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35033817

RESUMO

The significance of B-RAF in the promotion of cell proliferation and motility was explored by the researchers in the past. However, in 2002, several researchers found that mutation in B-RAF leads to cancer. Extensive research on B-RAF mutations suggested B-RAF V600E mutation as a critical predictive, prognostic and diagnostic biomarker in numerous cancers such as melanoma, thyroid, and colorectal cancers. Based on the significance of B-RAF kinase and associated mutation, the present review will give a brief overview about structure and functions of B-RAF enzyme, its role in different types of cancer, available drugs in the market for B-RAF inhibition, chemical classification and SAR studies of reported investigational B-RAF inhibitors in patented and non-patented literature during last decade. The SAR provided for all the reported inhibitors will help researchers to gain knowledge about the possible structural features required for selective B-RAF inhibition. This insightful analysis of B-RAF will certainly help researchers to develop novel anticancer agents in the future.


Assuntos
Antineoplásicos , Melanoma , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Mutação , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf
7.
Cells ; 10(9)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34572078

RESUMO

The global community decided in 2015 to improve people's lives by 2030 by setting 17 global goals for sustainable development. The second goal of this community was to end hunger. Plant seeds are an essential input in agriculture; however, during their developmental stages, seeds can be negatively affected by environmental stresses, which can adversely affect seed vigor, seedling establishment, and crop production. Seeds resistant to high salinity, droughts and climate change can result in higher crop yield. The major findings suggested in this review refer nanopriming as an emerging seed technology towards sustainable food amid growing demand with the increasing world population. This novel growing technology could influence the crop yield and ensure the quality and safety of seeds, in a sustainable way. When nanoprimed seeds are germinated, they undergo a series of synergistic events as a result of enhanced metabolism: modulating biochemical signaling pathways, trigger hormone secretion, reduce reactive oxygen species leading to improved disease resistance. In addition to providing an overview of the challenges and limitations of seed nanopriming technology, this review also describes some of the emerging nano-seed priming methods for sustainable agriculture, and other technological developments using cold plasma technology and machine learning.


Assuntos
Agricultura , Nanotecnologia/métodos , Sementes/crescimento & desenvolvimento , Agricultura/métodos , Agricultura/tendências , Produtos Agrícolas , Germinação , Aprendizado de Máquina , Microbiota , Imunidade Vegetal , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico
8.
J Sep Sci ; 44(15): 2982-2995, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34085766

RESUMO

Endocrine disrupting chemicals are chemicals that interfere with any aspect of the endocrine system. Several natural and synthetic chemicals, including pesticides, have been identified as endocrine disruptors, which potentially inhibit the reproductive activity of the hormonal system. The pervasive occurrence with trace level concentrations and extensive variety are the reported characteristics of these chemicals. In this study, a dispersive liquid-liquid microextraction method coupled with gas chromatography and mass spectrometry for the determination of eight potential endocrine disruptor pesticides (Lindane, Diazinon, Fenitrothion, Malathion, Aldrin, α-Endosulfan, ß-Endosulfan, Methoxychlor) in bovine milk samples was developed. Several parameters that can influence the extraction efficiency were studied. Under optimized conditions, the calibration curves of all eight analytes presented coefficient of determination higher than 0.998 (range level of 2.0-1000 ng/mL). The limits of detection and quantification ranged from 0.90 to 5.00 ng/mL and 2.50 to 15.0 ng/mL, respectively.


Assuntos
Disruptores Endócrinos/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Microextração em Fase Líquida/métodos , Leite/química , Praguicidas/análise , Animais , Bovinos , Limite de Detecção , Solventes/química
9.
RSC Adv ; 9(5): 2484-2492, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35520531

RESUMO

In the present study, we demonstrated the use of fragmented lignin in the synthesis of a hierarchical-type structure of ZnO nanorods. Lignin was isolated from bagasse by the microwave assisted method and its fragmentation was achieved in alkaline conditions along with hydrogen peroxide. Lignin and fragmented lignin were purified by crystallisation followed by column chromatography and characterized by UV-visible spectroscopy, Frontier infra-red spectroscopy (FTIR), 1H-NMR and high resolution mass spectroscopy (HRMS). Fragmented lignin was utilized as a template for the synthesis of ZnO nanorods, which were characterized by powder XRD, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-DRS for the determination of crystal structure, particle morphology and band gap. XRD of the ZnO samples revealed a hexagonal wurtzite structure. The morphology of ZnO without fragmented lignin showed agglomerated nanoparticles and with fragmented lignin, a self-assembled hierarchical nanostructure due to nanorods of 30 nm diameter and 200-500 nm length was observed. The fragmented lignin showed a pronounced effect on the particle size and morphology of ZnO nanoparticles. We measured the response of the hierarchical ZnO nanostructure (50 ppm) for sensing NH3 in terms of change in voltage across known resistance. We observed the response and recovery upon introduction of the analyte ammonia gas at 175 °C.

10.
Chem Commun (Camb) ; (18): 2014-5, 2002 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-12357756

RESUMO

Highly dispersed zirconium oxide species on silica exhibit fine structure in phosphorescence emission spectra showing the vibration energy of the photoactive Zr-O-Si linkage to be 955 cm-1, and the species promotes the photoinduced non-oxidative methane coupling at room temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA