Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Harmful Algae ; 112: 102183, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35144821

RESUMO

Harmful algal blooms (HABs) are a threat to human health, local economies, and coastal ecosystems. Generalized additive mixed models (GAMMs) were fitted using a 24-y database in order to predict future occurrences of three distinct species of HABs on the Canadian East Coast, the dinoflagellates Dinophysis acuminata and D. norvegica, and the diatom Pseudo-nitzschia seriata. GAMMs produced for each species were combined with two downscaled climate simulations (MPI-ESM-LR and CanESM2) under the representative concentration pathway (RCP) 8.5 over the 21st century. D. acuminata, D. norvegica, and P. seriata GAMMs were fitted using sea surface salinity and sea surface temperature, with wind speed averaged over seven days added to the P. seriata model. GAMMs succeeded at various degrees at reproducing past HAB events, with D. acuminata and D. norvegica being accurately modelled, and P. seriata producing less precise model results. Both climate simulations lead to similar conclusions in regards to the spatio-temporal shift in occurrences of the three studied species. D. acuminata and D. norvegica blooms (≥ 1000 cells L - 1) are predicted to increase in the future, whereas P. seriata bloom events (≥ 5000 cells L - 1) will tend to stabilise/decrease overall on the Canadian East Coast. Dinophysis blooms are most likely to increase in the St. Lawrence Estuary. Pseudo-nitzschia blooms will move to the northeastern part of the Gulf of St. Lawrence and will increase in the Bay of Fundy/Gulf of Maine regions. On average, earlier blooms and larger seasonal windows of opportunity are predicted across all species investigated. We conclude that changes in D. acuminata, D. norvegica, and P. seriata bloom dynamics and their spatial distributions could threaten aquaculture industries and ecosystem health on Canada's East Coast in localities and during seasons which were not previously impacted by these species.


Assuntos
Diatomáceas , Dinoflagellida , Canadá , Mudança Climática , Ecossistema
2.
J Environ Manage ; 293: 112823, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34044234

RESUMO

The International Convention for the Control and Management of Ships' Ballast Water and Sediments (BWM Convention) aims to mitigate the introduction risk of harmful aquatic organisms and pathogens (HAOP) via ships' ballast water and sediments. The BWM Convention has set regulations for ships to utilise exceptions and exemptions from ballast water management under specific circumstances. This study evaluated local and regional case studies to provide clarity for situations, where ships could be excepted or exempted from ballast water management without risking recipient locations to new introductions of HAOP. Ships may be excepted from ballast water management if all ballasting operations are conducted in the same location (Regulation A-3.5 of the BWM Convention). The same location case study determined whether the entire Vuosaari harbour (Helsinki, Finland) should be considered as the same location based on salinity and composition of HAOP between the two harbour terminals. The Vuosaari harbour case study revealed mismatching occurrences of HAOP between the harbour terminals, supporting the recommendation that exceptions based on the same location concept should be limited to the smallest feasible areas within a harbour. The other case studies evaluated whether ballast water exemptions could be granted for ships using two existing risk assessment (RA) methods (Joint Harmonised Procedure [JHP] and Same Risk Area [SRA]), consistent with Regulation A-4 of the BWM Convention. The JHP method compares salinity and presence of target species (TS) between donor and recipient ports to indicate the introduction risk (high or low) attributed to transferring unmanaged ballast water. The SRA method uses a biophysical model to determine whether HAOP could naturally disperse between ports, regardless of their transportation in ballast water. The results of the JHP case study for the Baltic Sea and North-East Atlantic Ocean determined that over 97% of shipping routes within these regions resulted in a high-risk indication. The one route assessed in the Gulf of Maine, North America also resulted in a high-risk outcome. The SRA assessment resulted in an overall weak connectivity between all ports assessed within the Gulf of the St. Lawrence, indicating that a SRA-based exemption would not be appropriate for the entire study area. In summary, exceptions and exemptions should not be considered as common alternatives for ballast water management. The availability of recent and detailed species occurrence data was considered the most important factor to conduct a successful and reliable RA. SRA models should include biological factors that influence larval dispersal and recruitment potential (e.g., pelagic larval duration, settlement period) to provide a more realistic estimation of natural dispersal.


Assuntos
Espécies Introduzidas , Água , Oceano Atlântico , Finlândia , Maine , América do Norte , Navios , Abastecimento de Água
3.
PLoS One ; 12(9): e0185671, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28961269

RESUMO

Dispersal heterogeneity is an important process that can compensate for downstream advection, enabling aquatic organisms to persist or spread upstream. Our main focus was the effect of year-to-year variation in larval dispersal on invasion spread rate. We used the green crab, Carcinus maenas, as a case study. This species was first introduced over 200 years ago to the east coast of North America, and once established has maintained a relatively consistent spread rate against the dominant current. We used a stage-structured, integro-difference equation model that couples a demographic matrix for population growth and dispersal kernels for spread of individuals within a season. The kernel describing larval dispersal, the main dispersive stage, was mechanistically modeled to include both drift and settlement rate components. It was parameterized using a 3-dimensional hydrodynamic model of the Gulf of St Lawrence, which enabled us to incorporate larval behavior, namely vertical swimming. Dispersal heterogeneity was modeled at two temporal scales: within the larval period (months) and over the adult lifespan (years). The kernel models variation within the larval period. To model the variation among years, we allowed the kernel parameters to vary by year. Results indicated that when dispersal parameters vary with time, knowledge of the time-averaged dispersal process is insufficient for determining the upstream spread rate of the population. Rather upstream spread is possible over a number of years when incorporating the yearly variation, even when there are only a few "good years" featured by some upstream dispersal among many "bad years" featured by only downstream dispersal. Accounting for annual variations in dispersal in population models is important to enhance understanding of spatial dynamics and population spread rates. Our developed model also provides a good platform to link the modeling of larval behavior and demography to large-scale hydrodynamic models.


Assuntos
Crustáceos , Processos Estocásticos , Animais , Oceano Atlântico , Demografia , Noroeste dos Estados Unidos , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA