Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biofouling ; 39(7): 730-747, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781891

RESUMO

This study aimed to assess the influence of nutrient enrichment on the development of microalgal biofilm on concrete and PVC cubes. Three mesocosms were utilized to create a nutrient gradient over a period of 28 days. Various parameters including biomass, photosynthetic activity, microtopography, and extracellular polymeric substances (EPS) were measured. Imaging PAM techniques were employed to obtain surface-wide data. Results revealed that nutrient availability had no significant impact on Chl a biomass and the maximum quantum efficiency of PSII (Fv/Fm). The photosynthetic capacity and efficiency were minimally affected by nutrient availability. Interestingly, the relationship between microphytobenthic (MPB) biomass and photosynthesis and surface rugosity exhibited distinct patterns. Negative reliefs showed a strong correlation with Fv/Fm, while no clear pattern emerged for biomass on rough concrete structures. Overall, our findings demonstrate that under conditions of heightened eutrophication, biofilm photosynthesis thrives in the fissures and crevasses of colonized structures regardless of nutrient levels. This investigation provides valuable insights into the interplay between nutrient availability and surface rugosity.


Assuntos
Biofilmes , Microalgas , Fotossíntese , Biomassa
2.
Aquat Toxicol ; 258: 106501, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36989926

RESUMO

Very few studies have looked at the potential biological effects of degradation products of galvanic anodes particularly on primary producers which are central to food webs in marine ecosystems. The galvanic anode cathodic protection system (GACP) is widely used to protect submerged metallic structures from corrosion. Aluminium (Al) and zinc (Zn) are the main constituents of galvanic anodes and are therefore released in the marine environment by oxidation process to form ions or oxy-hydroxides. The main objective of our study was to evaluate the effects of the metals released from an aluminium-based galvanic anode on microphytobenthos performance in term of biofilm growing through the analysis of photosynthetic parameters, the determination of chlorophyll and extracellular polymeric substances (EPS). The bioaccumulation of Al and Zn were measured in the microphytobenthic compartment collected at the surface of polyvinyl chloride (PVC) plates exposed during 13 days to seawaters enriched in different concentrations of metals released from dissolution of one anode. Determination of bioconcentration factors confirmed that the microphytobenthos has incorporated Al. A significative effect was observed on the Chl a concentration for the higher tested concentration ([Al] = 210.1 ± 60.2 µg L - 1; [Zn] = 20.2 ± 1.4 µg L - 1). The seawater exposed to the anode affected the MPB productivity (ETRIImax) with consequences on acclimatation light (Ek), absorption cross section of PSII (σPII), Fv/Fm and NPQ. Regarding the EPS production, the anode degradation presented an impact on high and low molecular weight of both carbohydrates and protein fractions of microphytobenthos suggesting that EPS play an essential role in sequestering metal contaminants to maintain the integrity of the biological membranes and the functionality of the cellular organelles. The accumulation of Al released by GACP in microphytobenthos cells could lead to physiologic problems in photosynthetic organisms.


Assuntos
Alumínio , Poluentes Químicos da Água , Bioacumulação , Ecossistema , Poluentes Químicos da Água/toxicidade , Zinco/análise , Fotossíntese , Eletrodos
3.
Biofouling ; 38(5): 493-506, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35707904

RESUMO

Colonisation of artificial structures by primary producers is an important determinant for eco-engineering projects. In this context, interactions between the colonisation by microphytobenthic biofilm and macroalgae were explored on 48 samples of marine infrastructures (MI) immersed for one year in the English Channel. Marine infrastructures samples with smooth and rough surface were compared to evaluate the influence of surface micro-scale rugosity. Microphytobenthos biomass (MPB), macroalgal diversity and photosynthetic parameters of both were assessed during colonisation. No significant differences were found as a function of the surface rugosity of MI samples, which was unexpected, but can be explained by biogenic rugosity provided by barnacles. Marine infrastructures were largely colonised by a red encrusting alga, Phymatolithon purpureum, which showed poor photosynthetic capacity compared to the microphytobenthos present next to it. Colonisation by monospecific encrusting algae tended to reduce the primary productivity of hard substrate.


Assuntos
Biofilmes , Alga Marinha , Biomassa , Ecossistema , Fotossíntese
4.
Front Microbiol ; 13: 893413, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615522

RESUMO

Marine Synechococcus cyanobacteria are ubiquitous in the ocean, a feature likely related to their extensive genetic diversity. Amongst the major lineages, clades I and IV preferentially thrive in temperate and cold, nutrient-rich waters, whilst clades II and III prefer warm, nitrogen or phosphorus-depleted waters. The existence of such cold (I/IV) and warm (II/III) thermotypes is corroborated by physiological characterization of representative strains. A fifth clade, CRD1, was recently shown to dominate the Synechococcus community in iron-depleted areas of the world ocean and to encompass three distinct ecologically significant taxonomic units (ESTUs CRD1A-C) occupying different thermal niches, suggesting that distinct thermotypes could also occur within this clade. Here, using comparative thermophysiology of strains representative of these three CRD1 ESTUs we show that the CRD1A strain MITS9220 is a warm thermotype, the CRD1B strain BIOS-U3-1 a cold temperate thermotype, and the CRD1C strain BIOS-E4-1 a warm temperate stenotherm. Curiously, the CRD1B thermotype lacks traits and/or genomic features typical of cold thermotypes. In contrast, we found specific physiological traits of the CRD1 strains compared to their clade I, II, III, and IV counterparts, including a lower growth rate and photosystem II maximal quantum yield at most temperatures and a higher turnover rate of the D1 protein. Together, our data suggests that the CRD1 clade prioritizes adaptation to low-iron conditions over temperature adaptation, even though the occurrence of several CRD1 thermotypes likely explains why the CRD1 clade as a whole occupies most iron-limited waters.

5.
J Environ Manage ; 306: 114487, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35065361

RESUMO

Eutrophication and dystrophy are two of the main problems affecting coastal ecosystems. In the Bay of Seine, phosphorus (P) inputs from the Seine estuary have been largely reduced in the last decade, in contrast to nitrogen (N), which leads to high N/P ratio inputs. To study the effect of dystrophy, an enrichment bioassay using water sampled from the Bay of Seine was repeated 19 times over a period of 18 months with six different enrichments. After a few days, chlorophyll a (chl a), alkaline phosphatase activity (APA), transparent exopolymeric particles (TEPs), cytometric size structure, and maximum quantum yield of photosystem II were measured. The data provide strong evidence for an N & P colimitation system in the vast majority of the incubations, as only the N + P and N + P + Si enrichments supported phytoplankton growth, and Si only appeared to play a secondary role in our incubations. A N/P ratio of 16 equal to the Redfield ratio was identified as the optimum for balanced growth, as chl a was the highest and TEP and APA production was the lowest at this ratio. To fit the requirements of the colimited system, a new resource use efficiency (RUENP) calculation was developed to account for N and P colimitation instead of only one nutrient, as is usually the case. This calculation allows better representation of RUE in dystrophic conditions, as found in many highly anthropized ecosystems. The relationships between RUENP and the size structure of the phytoplankton community were explored, and a significant positive correlation between RUENP and larger cells (>2 µm) and a negative correlation with smaller cells (<2 µm) were noted, showing a better use of nutrients by larger cells. This study highlights an increase of RUENP with the phytoplankton cell size in a colimited system.


Assuntos
Baías , Fitoplâncton , Clorofila A , Ecossistema , Eutrofização , Nitrogênio/análise , Fósforo/análise
6.
Mar Pollut Bull ; 168: 112387, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33895393

RESUMO

Coastal ecosystems are increasingly threatened by eutrophication and dystrophy. In this context, the full pattern of a bloom dominated by the dinoflagellate, Lepidodinium chlorophorum, was investigated by a high frequency monitoring buoy equipped with sensors allowing nutrients and photosynthesis measurements. An increase of the N/P ratio affected phytoplankton physiology leading to bloom collapse with a slight oxygen depletion. In parallel, enrichment experiments were performed on the natural bloom population. After 5 days of incubation the community structure, using flow cytometry and several physiological parameters were analysed. The data reveal a potential N and P co-limitation and a decoupling between primary production and productivity in fully enriched conditions. Under unbalanced N/P inputs, high level of alkaline phosphatase activity and transparent exopolymeric particle production, which favour phytoplankton sedimentation, were observed. Nutrient inputs and their stoichiometry control phytoplankton growth, the community structure, physiological regulations, the fate of the bloom and consequences.


Assuntos
Baías , Proliferação Nociva de Algas , Bioensaio , Ecossistema , Eutrofização , Fitoplâncton
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA