Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38781455

RESUMO

Obesity is a risk factor for pancreatic ductal adenocarcinoma (PDAC), a deadly disease with limited preventive strategies. Lifestyle interventions to decrease obesity represent a potential approach to prevent obesity-associated PDAC. Here, we examined whether decreasing obesity through physical activity (PA) and/or dietary changes could decrease inflammation in humans and prevent obesity-associated PDAC in mice. Comparison of circulating inflammatory-associated cytokines in subjects (overweight and obese) before and after a PA intervention revealed PA lowered systemic inflammatory cytokines. Mice with pancreatic-specific inducible KrasG12D expression were exposed to PA and/or dietary interventions during and after obesity-associated cancer initiation. In mice with concurrent diet-induced obesity (DIO) and KrasG12D expression, the PA intervention led to lower weight gain, suppressed systemic inflammation, delayed tumor progression, and decreased pro-inflammatory signals in the adipose tissue. However, these benefits were not as evident when obesity preceded pancreatic KrasG12D expression. Combining PA with diet-induced weight loss (DI-WL) delayed obesity-associated PDAC progression in the genetically engineered mouse model, but neither PA alone nor combined with DI-WL or chemotherapy prevented PDAC tumor growth in orthotopic PDAC models regardless of obesity status. PA led to upregulation of IL-15ra in adipose tissue. Adipose-specific overexpression of IL-15 slowed PDAC growth but only in non-obese mice. Overall, our study suggests that PA alone or combined with DI-WL can reduce inflammation and delay obesity-associated PDAC development or progression. Lifestyle interventions that prevent or manage obesity or therapies that target weight loss-related molecular pathways could prevent progression of PDAC.

2.
Clin Transl Gastroenterol ; 15(4): e00686, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284831

RESUMO

INTRODUCTION: Chronic pancreatitis (CP) is a progressive fibroinflammatory disorder lacking therapies and biomarkers. Neutrophil gelatinase-associated lipocalin (NGAL) is a proinflammatory cytokine elevated during inflammation that binds fatty acids (FAs) such as linoleic acid. We hypothesized that systemic NGAL could serve as a biomarker for CP and, with FAs, provide insights into inflammatory and metabolic alterations. METHODS: NGAL was measured by immunoassay, and FA composition was measured by gas chromatography in plasma (n = 171) from a multicenter study, including controls (n = 50), acute and recurrent acute pancreatitis (AP/RAP) (n = 71), and CP (n = 50). Peripheral blood mononuclear cells (PBMCs) from controls (n = 16), AP/RAP (n = 17), and CP (n = 15) were measured by cytometry by time-of-flight. RESULTS: Plasma NGAL was elevated in subjects with CP compared with controls (area under the curve [AUC] = 0.777) or AP/RAP (AUC = 0.754) in univariate and multivariate analyses with sex, age, body mass index, and smoking (control AUC = 0.874; AP/RAP AUC = 0.819). NGAL was elevated in CP and diabetes compared with CP without diabetes ( P < 0.001). NGAL + PBMC populations distinguished CP from controls (AUC = 0.950) or AP/RAP (AUC = 0.941). Linoleic acid was lower, whereas dihomo-γ-linolenic and adrenic acids were elevated in CP ( P < 0.05). Linoleic acid was elevated in CP with diabetes compared with CP subjects without diabetes ( P = 0.0471). DISCUSSION: Elevated plasma NGAL and differences in NGAL + PBMCs indicate an immune response shift that may serve as biomarkers of CP. The potential interaction of FAs and NGAL levels provide insights into the metabolic pathophysiology and improve diagnostic classification of CP.


Assuntos
Biomarcadores , Lipocalina-2 , Pancreatite Crônica , Humanos , Masculino , Feminino , Lipocalina-2/sangue , Pancreatite Crônica/sangue , Pancreatite Crônica/diagnóstico , Pessoa de Meia-Idade , Biomarcadores/sangue , Adulto , Estudos Transversais , Leucócitos Mononucleares/metabolismo , Idoso , Ácidos Graxos/sangue , Ácidos Graxos/metabolismo , Ácido Linoleico/sangue , Estudos de Casos e Controles
3.
PLoS One ; 18(7): e0286532, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37498859

RESUMO

A previously described heterophil degranulation assay was adapted for use with ileal mucosal tissue via quantification of ß-D-glucuronidase and assay end product 4-methylumbelliferone (4-MU). Three initial experiments evaluated the effect of in ovo inoculations of Citrobacter freundii (CF) or mixed lactic acid bacteria (LAB) on ileal granulocyte degranulation. Inoculations were administered on embryonic d18, body weights (BW) were recorded on day of hatch (DOH) and d10 to calculate body weight gain (BWG), and ileal mucosal scrapings were collected on DOH or d10 for the 4-MU assay. In all experiments, treatments were statistically analyzed relative to control groups. Treatments minimally affected BWG in all in ovo experiments (p > 0.05) relative to respective control groups. Similarly, ileal degranulation in in ovo treatments did not statistically differ (p > 0.05). Based on BWG, in ovo treatments may have induced low-level inflammation unable to elicit detectable changes via the 4-MU assay. Four subsequent experiments were conducted to evaluate effects of Eimeria maxima (EM) on ileal degranulation. Treatments included non-inoculated controls and low, medium, or high EM infection. Across all four experiments, final BW or BWG over the inoculation period were suppressed (p < 0.05) in EM groups relative to respective controls with the exception of EM-low (p = 0.094) and EM-medium (p = 0.096) in one trial. Ileal mucosal scrapings for the 4-MU assay were collected on day of peak lesions. Resulting values were reduced (p < 0.05) for EM treated birds in three experiments with the exception of EM-medium (p = 0.247). No differences were observed in one experiment (p = 0.351), which may have been attributed to a variation in strain of infecting Eimeria. Although refinement for low level inflammation is warranted, results indicate successful adaptation of the 4-MU assay for use with intestinal tissue during significant gastrointestinal inflammation.


Assuntos
Coccidiose , Eimeria , Lactobacillales , Doenças das Aves Domésticas , Animais , Galinhas , Coccidiose/veterinária , Íleo , Aumento de Peso , Peso Corporal , Doenças das Aves Domésticas/microbiologia
4.
Front Oncol ; 12: 867271, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35785195

RESUMO

Siderophores are iron chelating molecules produced by nearly all organisms, most notably by bacteria, to efficiently sequester the limited iron that is available in the environment. Siderophores are an essential component of mammalian iron homeostasis and the ongoing interspecies competition for iron. Bacteria produce a broad repertoire of siderophores with a canonical role in iron chelation and the capacity to perform versatile functions such as interacting with other microbes and the host immune system. Siderophores are a vast area of untapped potential in the field of cancer research because cancer cells demand increased iron concentrations to sustain rapid proliferation. Studies investigating siderophores as therapeutics in cancer generally focused on the role of a few siderophores as iron chelators; however, these studies are limited and some show conflicting results. Moreover, siderophores are biologically conserved, structurally diverse molecules that perform additional functions related to iron chelation. Siderophores also have a role in inflammation due to their iron acquisition and chelation properties. These diverse functions may contribute to both risks and benefits as therapeutic agents in cancer. The potential of siderophore-mediated iron and bacterial modulation to be used in the treatment of cancer warrants further investigation. This review discusses the wide range of bacterial siderophore functions and their utilization in cancer treatment to further expand their functional relevance in cancer detection and treatment.

5.
PLoS One ; 15(6): e0225921, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32492021

RESUMO

Probiotics have become increasingly popular in the poultry industry as a promising nutritional intervention to promote the modulation of intestinal microbial communities and their metabolic activities as a means of improving health and performance. This study aimed to determine the influence of different probiotic formulations on the taxonomic and metabolic profiling of cecal microbial communities, as well as to define associations between cecal microbiota and growth parameters in 21 and 42-day-old broilers. Probiotics investigated included a synbiotic (SYNBIO), a yeast-based probiotic (YEAST), and three single-strain formulations of spore-forming Bacillus amyloliquefaciens (SINGLE1), B. subtilis (SINGLE2) and B. licheniformis (SINGLE3). Dietary inclusion of SYNBIO, YEAST, SINGLE2, and SINGLE3 into the diets supported a significant stimulation of BW and BWG by 7 days of age. Besides, SYNBIO reduced the overall mortality rate by 42d (p<0.05). No significant variation was observed among different probiotic-based formulations for cecal microbiota composition. However, there was a treatment-specific effect on the metabolic profiles, with a particular beneficial metabolic adaptation by the microbiota when supplemented by SYNBIO and SINGLE2. Furthermore, the population of Lactobacillales was identified to be strongly associated with lower Enterobacteriales colonization, higher BW means, and lower mortality rate of growing broilers. Overall, the results emphasize that probiotic supplementation may enhance the microbial energy metabolism in the ceca of young broilers.


Assuntos
Ceco/efeitos dos fármacos , Ceco/microbiologia , Galinhas , Microbiota/efeitos dos fármacos , Probióticos/farmacologia , Animais , Masculino
6.
PLoS One ; 15(5): e0225871, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32369478

RESUMO

The potential of probiotics to manipulate the intestinal microbial ecosystem toward commensal bacteria growth offers great opportunity for enhancing health and performance in poultry. This study aimed to evaluate the efficacy of five probiotic-based formulations in modulating cecal microbiota in broilers at 21 and 42 days of age. Probiotics investigated included a synbiotic (SYNBIO), a yeast (YEAST), and three single-strain formulations of Bacillus amyloliquefaciens (SINGLE1), B. subtilis (SINGLE2) and B. licheniformis (SINGLE3). Alpha-diversity analyses showed that cecal microbiota of SINGLE1, SINGLE2, and YEAST had low diversity compared to the control diet with no feed additive (CON) at 21d. At the same age, weighted Unifrac distance measure showed significant differences between samples from SYNBIO and CON (P = 0.02). However, by analyzing principal coordinates analysis (PCoA) with unweighted Unifrac, there was no evidence of clustering between CON and probiotic treatments. By 42d, there were no differences in alpha or beta-diversity in the microbiota of probiotic treatments compared to CON. Similarly, taxonomic microbial profiling did not show major changes in cecal microbial taxa. In conclusion, not all probiotic-based formulations tested had a core benefit on the modulation of microbiota. However, based on the quantitative beta diversity results, SYNBIO greatly influenced the cecal microbial community structure attributable to transient variations in relative taxon abundance.


Assuntos
Ceco/microbiologia , Galinhas/microbiologia , Alimentos Formulados , Microbioma Gastrointestinal , Probióticos , Animais
7.
Front Microbiol ; 10: 2858, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998246

RESUMO

Given that recent advances in metagenomics have highlighted the importance of intestinal microbes for poultry health, there has been a corresponding search for early manipulation strategies of intestinal microbiota in order to advance immune system development and optimize functional properties of growth. In this study, we used the in ovo technique as an experimental model to address how early bacterial intestinal colonization could affect the development and establishment of the mature ileal microbiota. Inoculations containing one of the following: 0.2 mL of 0.9% sterile saline (S), approximately 102 cells of Citrobacter freundii (CF), Citrobacter species (C2) or lactic acid bacteria mixture (L) were administered via in ovo into the amnion. Results showed that Enterobacteriaceae abundance was negatively correlated with aging, although its high population at day of hatch affected the microbiota composition, delaying mature microbiota establishment. L treatment increased colonization of butyrate-producing bacteria by 3 and 10 days, and segmented filamentous bacteria in the lower ileum by 10 days. On the other hand, L-probiotic decreased the population of Enterococcaceae. In addition, L and C2 microbial communities were less diverse at 10 than 3 days of age in the upper ileum. Importantly, these findings provide a valuable resource for a potential study model for interactions between microbial colonization and associated immune responses. In conclusion, our analysis demonstrates that intestinal pioneer colonizers play a critical role in driving the course of microbial community composition and diversity over time, in which early life exposure to L-based probiotic supported selection alongside greater colonization of symbiotic populations in the ileum of young broilers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA