Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Autism ; 15(1): 28, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877552

RESUMO

BACKGROUND: Mutations in the X-linked gene cyclin-dependent kinase-like 5 (CDKL5) cause a severe neurological disorder characterised by early-onset epileptic seizures, autism and intellectual disability (ID). Impaired hippocampal function has been implicated in other models of monogenic forms of autism spectrum disorders and ID and is often linked to epilepsy and behavioural abnormalities. Many individuals with CDKL5 deficiency disorder (CDD) have null mutations and complete loss of CDKL5 protein, therefore in the current study we used a Cdkl5-/y rat model to elucidate the impact of CDKL5 loss on cellular excitability and synaptic function of CA1 pyramidal cells (PCs). We hypothesised abnormal pre and/or post synaptic function and plasticity would be observed in the hippocampus of Cdkl5-/y rats. METHODS: To allow cross-species comparisons of phenotypes associated with the loss of CDKL5, we generated a loss of function mutation in exon 8 of the rat Cdkl5 gene and assessed the impact of the loss of CDLK5 using a combination of extracellular and whole-cell electrophysiological recordings, biochemistry, and histology. RESULTS: Our results indicate that CA1 hippocampal long-term potentiation (LTP) is enhanced in slices prepared from juvenile, but not adult, Cdkl5-/y rats. Enhanced LTP does not result from changes in NMDA receptor function or subunit expression as these remain unaltered throughout development. Furthermore, Ca2+ permeable AMPA receptor mediated currents are unchanged in Cdkl5-/y rats. We observe reduced mEPSC frequency accompanied by increased spine density in basal dendrites of CA1 PCs, however we find no evidence supporting an increase in silent synapses when assessed using a minimal stimulation protocol in slices. Additionally, we found no change in paired-pulse ratio, consistent with normal release probability at Schaffer collateral to CA1 PC synapses. CONCLUSIONS: Our data indicate a role for CDKL5 in hippocampal synaptic function and raise the possibility that altered intracellular signalling rather than synaptic deficits contribute to the altered plasticity. LIMITATIONS: This study has focussed on the electrophysiological and anatomical properties of hippocampal CA1 PCs across early postnatal development. Studies involving other brain regions, older animals and behavioural phenotypes associated with the loss of CDKL5 are needed to understand the pathophysiology of CDD.


Assuntos
Modelos Animais de Doenças , Potenciação de Longa Duração , Proteínas Serina-Treonina Quinases , Receptores de AMPA , Receptores de N-Metil-D-Aspartato , Espasmos Infantis , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de AMPA/metabolismo , Receptores de AMPA/genética , Espasmos Infantis/genética , Espasmos Infantis/metabolismo , Ratos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Hipocampo/metabolismo , Células Piramidais/metabolismo , Células Piramidais/patologia , Masculino , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/patologia , Região CA1 Hipocampal/fisiopatologia , Síndromes Epilépticas/genética , Síndromes Epilépticas/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Sinapses/metabolismo , Potenciais Pós-Sinápticos Excitadores
2.
PNAS Nexus ; 2(6): pgad166, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37266396

RESUMO

Extracellular glutamate levels are elevated across brain regions immediately after stress. Despite sharing common features in their genesis, the patterns of stress-induced plasticity that eventually take shape are strikingly different between these brain areas. While stress causes structural and functional deficits in the hippocampus, it has the opposite effect on the amygdala. Riluzole, an FDA-approved drug known to modulate glutamate release and facilitate glutamate clearance, prevents stress-induced deficits in the hippocampus. But whether the same drug is also effective in countering the opposite effects of stress in the amygdala remains unexplored. We addressed this question by using a rat model wherein even a single 2-h acute immobilization stress causes a delayed expression of anxiety-like behavior, 10 days later, alongside stronger excitatory synaptic connectivity in the basolateral amygdala (BLA). This temporal profile-several days separating the acute stressor and its delayed impact-allowed us to test if these effects can be prevented by administering riluzole in drinking water after acute stress. Poststress riluzole not only prevented the delayed increase in anxiety-like behavior on the elevated plus maze but also blocked the increase in spine density on BLA neurons 10 days later. Further, stress-induced increase in the frequency of miniature excitatory postsynaptic currents recorded in BLA slices, 10 days later, was also blocked by the same poststress riluzole administration. Together, these findings underscore the importance of therapeutic strategies, aimed at glutamate uptake and modulation, in correcting the delayed behavioral, physiological, and morphological effects of stress on the amygdala.

3.
Cell Rep ; 42(4): 112344, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37018073

RESUMO

Pre-clinical studies of fragile X syndrome (FXS) have focused on neurons, with the role of glia remaining largely underexplored. We examined the astrocytic regulation of aberrant firing of FXS neurons derived from human pluripotent stem cells. Human FXS cortical neurons, co-cultured with human FXS astrocytes, fired frequent short-duration spontaneous bursts of action potentials compared with less frequent, longer-duration bursts of control neurons co-cultured with control astrocytes. Intriguingly, bursts fired by FXS neurons co-cultured with control astrocytes are indistinguishable from control neurons. Conversely, control neurons exhibit aberrant firing in the presence of FXS astrocytes. Thus, the astrocyte genotype determines the neuronal firing phenotype. Strikingly, astrocytic-conditioned medium, and not the physical presence of astrocytes, is capable of determining the firing phenotype. The mechanistic basis of this effect indicates that the astroglial-derived protein, S100ß, restores normal firing by reversing the suppression of a persistent sodium current in FXS neurons.


Assuntos
Síndrome do Cromossomo X Frágil , Humanos , Síndrome do Cromossomo X Frágil/genética , Astrócitos/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Neurônios/metabolismo , Técnicas de Cocultura
4.
Proc Natl Acad Sci U S A ; 119(31): e2107942119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35881809

RESUMO

The study of social dominance interactions between animals offers a window onto the decision-making involved in establishing dominance hierarchies and an opportunity to examine changes in social behavior observed in certain neurogenetic disorders. Competitive social interactions, such as in the widely used tube test, reflect this decision-making. Previous studies have focused on the different patterns of behavior seen in the dominant and submissive animal, neural correlates of effortful behavior believed to mediate the outcome of such encounters, and interbrain correlations of neural activity. Using a rigorous mutual information criterion, we now report that neural responses recorded with endoscopic calcium imaging in the prelimbic zone of the medial prefrontal cortex show unique correlations to specific dominance-related behaviors. Interanimal analyses revealed cell/behavior correlations that are primarily with an animal's own behavior or with the other animal's behavior, or the coincident behavior of both animals (such as pushing by one and resisting by the other). The comparison of unique and coincident cells helps to disentangle cell firing that reflects an animal's own or the other's specific behavior from situations reflecting conjoint action. These correlates point to a more cognitive rather than a solely behavioral dimension of social interactions that needs to be considered in the design of neurobiological studies of social behavior. These could prove useful in studies of disorders affecting social recognition and social engagement, and the treatment of disorders of social interaction.


Assuntos
Cálcio , Córtex Pré-Frontal , Predomínio Social , Interação Social , Animais , Cálcio/metabolismo , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia
5.
Mol Autism ; 13(1): 34, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35850732

RESUMO

BACKGROUND: Mutations in the postsynaptic transmembrane protein neuroligin-3 are highly correlative with autism spectrum disorders (ASDs) and intellectual disabilities (IDs). Fear learning is well studied in models of these disorders, however differences in fear response behaviours are often overlooked. We aim to examine fear behaviour and its cellular underpinnings in a rat model of ASD/ID lacking Nlgn3. METHODS: This study uses a range of behavioural tests to understand differences in fear response behaviour in Nlgn3-/y rats. Following this, we examined the physiological underpinnings of this in neurons of the periaqueductal grey (PAG), a midbrain area involved in flight-or-freeze responses. We used whole-cell patch-clamp recordings from ex vivo PAG slices, in addition to in vivo local-field potential recordings and electrical stimulation of the PAG in wildtype and Nlgn3-/y rats. We analysed behavioural data with two- and three-way ANOVAS and electrophysiological data with generalised linear mixed modelling (GLMM). RESULTS: We observed that, unlike the wildtype, Nlgn3-/y rats are more likely to response with flight rather than freezing in threatening situations. Electrophysiological findings were in agreement with these behavioural outcomes. We found in ex vivo slices from Nlgn3-/y rats that neurons in dorsal PAG (dPAG) showed intrinsic hyperexcitability compared to wildtype. Similarly, stimulating dPAG in vivo revealed that lower magnitudes sufficed to evoke flight behaviour in Nlgn3-/y than wildtype rats, indicating the functional impact of the increased cellular excitability. LIMITATIONS: Our findings do not examine what specific cell type in the PAG is likely responsible for these phenotypes. Furthermore, we have focussed on phenotypes in young adult animals, whilst the human condition associated with NLGN3 mutations appears during the first few years of life. CONCLUSIONS: We describe altered fear responses in Nlgn3-/y rats and provide evidence that this is the result of a circuit bias that predisposes flight over freeze responses. Additionally, we demonstrate the first link between PAG dysfunction and ASD/ID. This study provides new insight into potential pathophysiologies leading to anxiety disorders and changes to fear responses in individuals with ASD.


Assuntos
Transtorno Autístico , Animais , Transtorno Autístico/metabolismo , Medo/fisiologia , Congelamento , Humanos , Neurônios/fisiologia , Substância Cinzenta Periaquedutal/metabolismo , Ratos
6.
Front Mol Neurosci ; 15: 880382, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592113

RESUMO

There is accumulating evidence for contrasting patterns of stress-induced morphological and physiological plasticity in glutamatergic synapses of the hippocampus and amygdala. The same chronic stress that leads to the formation of dendritic spines in the basolateral amygdala (BLA) of rats, leads to a loss of spines in the hippocampus. However, the molecular underpinnings of these divergent effects of stress on dendritic spines are not well understood. Since the activity of the Rho GTPase Rac1 and the actin-depolymerizing factor cofilin are known to play a pivotal role in spine morphogenesis, we investigated if alterations in this signaling pathway reflect the differential effects of stress on spine plasticity in the hippocampus and amygdala. A day after the end of chronic immobilization stress (2 h/day for 10 days), we found a reduction in the activity of Rac1, as well as its effector p21-activated kinase 1 (PAK1), in the rat hippocampus. These changes, in turn, decreased cofilin phosphorylation alongside a reduction in the levels of profilin isoforms. In striking contrast, the same chronic stress increased Rac1, PAK1 activity, cofilin phosphorylation, and profilin levels in the BLA, which is consistent with enhanced actin polymerization leading to spinogenesis in the BLA. In the hippocampus, on the other hand, the same stress caused the opposite changes, the functional consequences of which would be actin depolymerization leading to the elimination of spines. Together, these findings reveal a role for brain-region specific differences in the dysregulation of Rac1-to-cofilin signaling in the effects of repeated stress on two brain areas that are implicated in the emotional and cognitive symptoms of stress-related psychiatric disorders.

7.
Behav Brain Res ; 428: 113892, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35436530

RESUMO

Individuals affected by autism spectrum disorders (ASDs) exhibit affective symptoms such as enhanced anxiety, which has been seen in rodent models of ASDs as well. Exposure to stress is also known to be anxiogenic. However, the effects of stress on animal models of ASDs remains less explored. Hence, in the present study we examined the impact of acute foot shock stress on anxiety-like behavior in two monogenic rat models of ASDs, fragile X mental retardation 1 knockout (Fmr1-/y) and phosphatase and tensin homolog heterozygous (Pten+/-). Before exposure to stress, the basal levels of anxiety-like behavior in both Fmr1-/y and Pten+/- rats were comparable to that seen in wild-type (WT) control rats in an open-field arena. After exposure to the foot shock stress, however, Fmr1-/y rats showed the highest levels of anxiety-like behavior. WT animals also showed enhanced anxiety-like behavior but not as robustly as the Fmr1-/y animals. In Pten+/- animals, on the other hand, the same stressor did not elicit any anxiogenic effects. In a separate group of rats, the efficacy of the acute foot shock in triggering a stress response was confirmed wherein a comparable surge in circulating corticosterone was seen in all three experimental groups. Thus, the same acute stress led to different effects on anxiety-like behavior in different rodent models of ASDs, suggesting that vulnerability to stress-induced changes in anxiety may vary with the underlying genetic mutations.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Animais , Ansiedade/genética , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/psicologia , Camundongos , Camundongos Knockout , PTEN Fosfo-Hidrolase/genética , Ratos , Comportamento Social
8.
J Cell Sci ; 135(9)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35319067

RESUMO

Stress response pathways protect the lung from the damaging effects of environmental toxicants. Here we investigate the role of the fragile X mental retardation protein (FMRP), a multifunctional protein implicated in stress responses, in the lung. We report that FMRP is expressed in murine and human lungs, in the airways and more broadly. Analysis of airway stress responses in mice and in a murine cell line ex vivo, using the well-established naphthalene injury model, reveals that FMRP-deficient cells exhibit increased expression of markers of oxidative and genotoxic stress and increased cell death. Further inquiry shows that FMRP-deficient cells fail to actuate the integrated stress response pathway (ISR) and upregulate the transcription factor ATF4. Knockdown of ATF4 expression phenocopies the loss of FMRP. We extend our analysis of the role of FMRP to human bronchial BEAS-2B cells, using a 9,10-phenanthrenequinone air pollutant model, to find that FMRP-deficient BEAS-2B cells also fail to actuate the ISR and exhibit greater susceptibility. Taken together, our data suggest that FMRP has a conserved role in protecting the airways by facilitating the ISR. This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Xenobióticos , Animais , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Regulação da Expressão Gênica , Humanos , Pulmão/metabolismo , Camundongos , Fatores de Transcrição/metabolismo
9.
Neurobiol Stress ; 18: 100442, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35330860

RESUMO

Stress elicits divergent patterns of structural plasticity in the amygdala and hippocampus. Despite these contrasting effects, at least one of the immediate consequences of stress - elevated levels of extracellular glutamate - is similar in both brain areas. This raises the possibility that the contrasting effects of stress on neuronal plasticity is shaped by differences in astrocytic glutamate clearance in these two brain areas. Although astrocytes play a key role in glutamate reuptake, past analyses of, and interventions against, stress-induced plasticity have focused largely on neurons. Hence, we tested the impact of riluzole, which potentiates glutamate clearance by astrocytic glutamate transporters, on principal neurons and astrocytes in the basal amygdala (BA) and hippocampal area CA1. Chronic immobilization stress reduced spine-density on CA1 pyramidal neurons of male rats. Riluzole, administered in the drinking water during chronic stress, prevented this decrease; but, the drug by itself had no effect. In contrast, the same chronic stress enhanced spine-density on BA principal neurons, and this effect, unlike area CA1, was not reversed by riluzole. Strikingly, riluzole treatment alone also caused spinogenesis in the BA. Thus, the same riluzole treatment that prevented the effect of stress on spines in the hippocampus, mimicked its effect in the amygdala. Further, chronic stress and riluzole alone decreased the neuropil volume occupied by astrocytes in both the BA and CA1 area. Riluzole treatment in stressed animals, however, did not reverse or further add to this reduction in either region. Thus, while the effects on astrocytes were similar, neuronal changes were distinct between the two areas following stress, riluzole and the two together. Therefore, similar to the impact of repeated stress, pharmacological potentiation of glutamate clearance, with or without stress, also leads to differential effects on dendritic spines in principal neurons of the amygdala and hippocampus. This highlights differences in the astrocytic glutamate reuptake machinery that are likely to have important functional consequences for stress-induced dysfunction, and its reversal, in two brain areas implicated in stress-related psychiatric disorders.

11.
Neuropsychopharmacology ; 47(6): 1145-1155, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34848856

RESUMO

Disruptions in amygdalar function, a brain area involved in encoding emotionally salient information, has been implicated in stress-related affective disorders. Earlier animal studies on the behavioral consequences of stress-induced abnormalities in the amygdala focused on learned behaviors using fear conditioning paradigms. If and how stress affects unconditioned, innate fear responses to ethologically natural aversive stimuli remains unexplored. Hence, we subjected rats to aversive ultrasonic vocalization calls emitted on one end of a linear track. Unstressed control rats exhibited a robust avoidance response by spending more time away from the source of the playback calls. Unexpectedly, prior exposure to chronic immobilization stress prevented this avoidance reaction, rather than enhancing it. Further, this stress-induced impairment extended to other innately aversive stimuli, such as white noise and electric shock in an inhibitory avoidance task. However, conditioned fear responses were enhanced by the same stress. Inactivation of the basolateral amygdala (BLA) in control rats prevented this avoidance reaction evoked by the playback. Consistent with this, analysis of the immediate early gene cFos revealed higher activity in the BLA of control, but not stressed rats, after exposure to the playback. Further, in vivo recordings in freely behaving control rats exposed to playback showed enhanced theta activity in the BLA, which also was absent in stressed rats. These findings offer a new framework for studying stress-induced alterations in amygdala-dependent maladaptive responses to more naturally threatening and emotionally relevant social stimuli. The divergent impact of stress on defensive responses--impaired avoidance responses together with increased conditioned fear--also has important implications for models of learned helplessness and depression.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Medo , Tonsila do Cerebelo/fisiologia , Animais , Aprendizagem da Esquiva/fisiologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Encéfalo , Condicionamento Clássico , Medo/fisiologia , Ratos
12.
Eur J Neurosci ; 54(11): 8029-8051, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34766390

RESUMO

Attention to key features of contexts and things is a necessary tool for all organisms. Detecting these salient features of cues, or simply, salience, can also be affected by exposure to traumatic stress, as has been widely reported in individuals suffering from post-traumatic stress disorder (PTSD). Interestingly, similar observations have been robustly replicated across many animal models of stress as well. By using evidence from such rodent stress paradigms, in the present review, we explore PTSD through the lens of salience processing. In this context, we propose that interaction between the neurotrophin brain-derived neurotrophic factor (BDNF) and glucocorticoids determines the long lasting cellular and behavioural consequences of stress salience. We also describe the dual effect of glucocorticoid therapy in the amelioration of PTSD symptoms. Finally, by integrating in vivo observations at multiple scales of plasticity, we propose a unifying hypothesis that pivots on a crucial role of glucocorticoid signalling in dynamically orchestrating stress salience.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Animais , Fator Neurotrófico Derivado do Encéfalo , Glucocorticoides/uso terapêutico , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico
13.
Cell Rep ; 37(2): 109805, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34644573

RESUMO

Fragile X syndrome (FXS), a commonly inherited form of autism and intellectual disability, is associated with emotional symptoms that implicate dysfunction of the amygdala. However, current understanding of the pathogenesis of the disease is based primarily on studies in the hippocampus and neocortex, where FXS defects have been corrected by inhibiting group I metabotropic glutamate receptors (mGluRs). Here, we observe that activation, rather than inhibition, of mGluRs in the basolateral amygdala reverses impairments in a rat model of FXS. FXS rats exhibit deficient recall of auditory conditioned fear, which is accompanied by a range of in vitro and in vivo deficits in synaptic transmission and plasticity. We find presynaptic mGluR5 in the amygdala, activation of which reverses deficient synaptic transmission and plasticity, thereby restoring normal fear learning in FXS rats. This highlights the importance of modifying the prevailing mGluR-based framework for therapeutic strategies to include circuit-specific differences in FXS pathophysiology.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiopatologia , Comportamento Animal , Medo , Síndrome do Cromossomo X Frágil/fisiopatologia , Rememoração Mental , Plasticidade Neuronal , Transmissão Sináptica , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/psicologia , Masculino , Ratos Sprague-Dawley , Ratos Transgênicos , Receptor de Glutamato Metabotrópico 5/metabolismo
14.
J Neurochem ; 158(5): 1094-1109, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34327719

RESUMO

Fragile X mental retardation protein (FMRP) is a neuronal protein mediating multiple functions, with its absence resulting in one of the most common monogenic causes of autism, Fragile X syndrome (FXS). Analyses of FXS pathophysiology have identified a range of aberrations in synaptic signaling pathways and plasticity associated with group I metabotropic glutamate (mGlu) receptors. These studies, however, have mostly focused on the post-synaptic functions of FMRP and mGlu receptor activation, and relatively little is known about their presynaptic effects. Neurotransmitter release is mediated via multiple forms of synaptic vesicle (SV) fusion, each of which contributes to specific neuronal functions. The impacts of mGlu receptor activation and loss of FMRP on these SV fusion events remain unexplored. Here we combined electrophysiological and fluorescence imaging analyses on primary hippocampal cultures prepared from an Fmr1 knockout (KO) rat model. Compared to wild-type (WT) hippocampal neurons, KO neurons displayed an increase in the frequency of spontaneous excitatory post-synaptic currents (sEPSCs), as well as spontaneous SV fusion events. Pharmacological activation of mGlu receptors in WT neurons caused a similar increase in spontaneous SV fusion and sEPSC frequency. Notably, this increase in SV fusion was not observed when spontaneous activity was blocked using the sodium channel antagonist tetrodotoxin. Importantly, the effect of mGlu receptor activation on spontaneous SV fusion was occluded in Fmr1 KO neurons. Together, our results reveal that FMRP represses spontaneous presynaptic SV fusion, whereas mGlu receptor activation increases this event. This reciprocal control appears to be mediated via their regulation of intrinsic neuronal excitability.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/antagonistas & inibidores , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Células Cultivadas , Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteína do X Frágil da Deficiência Intelectual/genética , Masculino , Fusão de Membrana/fisiologia , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Receptores de Glutamato Metabotrópico/genética , Vesículas Sinápticas/genética
15.
J Cell Sci ; 134(16)2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34328181

RESUMO

Precise development of the dendritic architecture is a critical determinant of mature neuronal circuitry. MicroRNA (miRNA)-mediated regulation of protein synthesis plays a crucial role in dendritic morphogenesis, but the role of miRNA-induced silencing complex (miRISC) protein components in this process is less studied. Here, we show an important role of a key miRISC protein, the GW182 paralog TNRC6A, in the regulation of dendritic growth. We identified a distinct brain region-specific spatiotemporal expression pattern of GW182 during rat postnatal development. We found that the window of peak GW182 expression coincides with the period of extensive dendritic growth, both in the hippocampus and cerebellum. Perturbation of GW182 function during a specific temporal window resulted in reduced dendritic growth of cultured hippocampal neurons. Mechanistically, we show that GW182 modulates dendritic growth by regulating global somatodendritic translation and actin cytoskeletal dynamics of developing neurons. Furthermore, we found that GW182 affects dendritic architecture by regulating the expression of actin modulator LIMK1. Taken together, our data reveal a previously undescribed neurodevelopmental expression pattern of GW182 and its role in dendritic morphogenesis, which involves both translational control and actin cytoskeletal rearrangement. This article has an associated First Person interview with the first author of the paper.


Assuntos
MicroRNAs , Actinas , Animais , Hipocampo , MicroRNAs/genética , Plasticidade Neuronal , Neurônios , Ratos
16.
Neurobiol Stress ; 14: 100327, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33937446

RESUMO

Adverse effects of chronic stress include anxiety, depression, and memory deficits. Some of these stress-induced behavioural deficits are mediated by impaired hippocampal function. Much of our current understanding about how stress affects the hippocampus has been derived from post-mortem analyses of brain slices at fixed time points. Consequently, neural signatures of an ongoing stressful experiences in the intact brain of awake animals and their links to later hippocampal dysfunction remain poorly understood. Further, no information is available on the impact of stress on sharp-wave ripples (SPW-Rs), high frequency oscillation transients crucial for memory consolidation. Here, we used in vivo tetrode recordings to analyze the dynamic impact of 10 days of immobilization stress on neural activity in area CA1 of mice. While there was a net decrease in pyramidal cell activity in stressed animals, a greater fraction of CA1 spikes occurred specifically during sharp-wave ripples, resulting in an increase in neuronal synchrony. After repeated stress some of these alterations were visible during rest even in the absence of stress. These findings offer new insights into stress-induced changes in ripple-spike interactions and mechanisms through which chronic stress may interfere with subsequent information processing.

17.
Behav Brain Res ; 406: 113243, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33727049

RESUMO

In this study, apical dendritic spine density of neurons in hippocampal, amygdalar and prefrontal cortical areas was compared in rats that were repeatedly winning or losing social conflicts. Territorial male wild-type Groningen (WTG) rats were allowed multiple daily attacks (>20 times) on intruder males in the resident-intruder paradigm. Frequent winning experiences are known to facilitate uncontrolled aggressive behavior reflected in aggressive attacks on anesthetized males which was also observed in the winners in this study. Both winners and losers were socially housed during the experiments; winners with females to stimulate territorial behavior, and losers with two other losing male rats. Twenty-four hours after the last social encounter, brains from experienced residential winners and repeatedly defeated intruder rats were collected and neuronal morphology in selected brain regions was studied via Golgi-Cox staining. Results indicate that spine density in the apical dendrites of the hippocampal CA1 reduced similarly in both winners and losers. In addition, winners showed increased spine densities at the proximal segments (20-30 µm) of the basolateral amygdala neurons and losers tended to show a decreased spine density at the more proximal segments of the infralimbic region of prefrontal cortex neurons. No effect of winning and losing was observed in the medial amygdala. The atrophic effect of repeated defeats in hippocampal and prefrontal regions was anticipated despite the fact that social housing of the repeatedly losing intruder males may have played a protective role. The reduction of hippocampal spine density in the winners seems surprising but supports previous findings in hierarchical dominant males in rat colonies. The dominants showed even greater shrinkage of the apical dendritic arbors of hippocampal CA3 pyramidal neurons compared to the stressed subordinates.


Assuntos
Comportamento Animal/fisiologia , Região CA1 Hipocampal , Comportamento Competitivo , Espinhas Dendríticas , Plasticidade Neuronal/fisiologia , Células Piramidais , Predomínio Social , Animais , Complexo Nuclear Basolateral da Amígdala/citologia , Complexo Nuclear Basolateral da Amígdala/patologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/patologia , Região CA1 Hipocampal/fisiologia , Espinhas Dendríticas/patologia , Espinhas Dendríticas/fisiologia , Masculino , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/fisiologia , Células Piramidais/patologia , Células Piramidais/fisiologia , Ratos
18.
Neurobiol Stress ; 14: 100292, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33490316

RESUMO

There is accumulating evidence that stress triggers specific temporal patterns of morphological plasticity in the amygdala, a brain area that plays a pivotal role in the debilitating emotional symptoms of stress-related psychiatric disorders. Acute immobilization stress is known to cause a delayed increase in the density of dendritic spines on principal neurons in the basolateral amygdala (BLA) of rats. These neuronal changes are also accompanied by a delayed enhancement in anxiety-like behavior. However, these earlier studies used male rats, and the delayed behavioral and synaptic effects of acute stress on the BLA of female rats remain unexplored. Here, using whole-cell recordings in rat brain slices, we find that a single exposure to 2-h immobilization stress leads to an increase, 10 days later, in the frequency of miniature excitatory postsynaptic currents (mEPSCs) recorded from lateral amygdala (LA) principal neurons in male rats. Further, acute stress also causes a reduction in the frequency of miniature inhibitory postsynaptic currents (mIPSCs) in LA neurons 10 days after acute stress. In striking contrast, excitatory and inhibitory synaptic transmission in the LA of female rats does not exhibit any delayed change despite exposure to the same acute stress. Finally, we examined the functional impact of these contrasting synaptic changes at the behavioral level. Male rats exhibit a delayed increase in anxiety-like behavior on the elevated plus-maze 10 days after acute stress. However, the same stress does not lead to a delayed anxiogenic effect in female rats. Together, these results demonstrate that the delayed modulation of the balance of synaptic excitation and inhibition in the amygdala, as well as anxiety-like behavior, differ between males and females. These findings provide a framework, across biological scales, for analyzing how affective symptoms of stress disorders vary between the sexes.

19.
Therapie ; 76(2): 75-86, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33358639

RESUMO

The multiple brain circuits involved in psychiatric diseases may appear daunting, but we prefer to concentrate on a select few, with a particular sensitivity to stress and neurodevelopmental issues, with a clear pharmacotherapy. This review is structured around 1. the key circuits, their role in health and disease, and the neurotransmitters maintaining them, 2. The influence of upbringing, stress, chronobiology, inflammation and infection, 3. The genetic and epigenetic influence on these circuits, particularly regarding copy number variants and neuronal plasticity, 4. The use and abuse of pharmacological agents with the particular risks of stress and chronobiology at critical periods. A major emphasis is placed on the links between hippocampus, prefrontal cortex and amygdala/periaqueductal grey which control specific aspects of cognition, mood, pain and even violence. Some of the research findings were from the innovative medicine initiative (IMI) NEWMEDS, a 22M€ academic/industrial consortium on the brain circuits critical for psychiatric disease.


Assuntos
Transtornos Mentais , Tonsila do Cerebelo , Hipocampo , Humanos , Córtex Pré-Frontal
20.
Stress ; 24(4): 474-480, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33238791

RESUMO

Stress may lead to augmented anxiety, which may, with time culminate in some form of anxiety disorder. Behavioral alterations related to increased anxiety can be broadly classified into two types-social, affecting interactions between individuals, and self-oriented, affecting the anxious individual only. While a growing body of literature now exists describing the effects of stress-induced anxiety on self-oriented behavior in animal models of anxiety disorders, the effects of such aberrant anxiety on social behavior has largely remained uncharacterized in these models. This study aims to fill this gap in our understanding by examining changes in social behavior following a single 2-hour episode of immobilization stress, which has been shown to cause delayed structural and functional changes in the amygdala. To this end, we examined social behavior, measured as active social interactions, anogenital sniffing, nose-to-nose contacts, allogrooming, actively following and crawling under, as well as self-oriented asocial behavior, manifested as self-grooming and rearing, in adult male rats. Stressed animals showed reduced social interaction 1 day after immobilization stress and this decrease was persistent for at least 10 days after stress. In contrast, individualistic behaviors were impaired only 10 days, but not 1 day later. Together, these results not only show that the same single episode of stress can elicit divergent effects on social and asocial measures of anxiety in the same animal, but also suggest that enhanced social anxiety soon after stress may also serve as an early indicator of its delayed behavioral effects.


Assuntos
Ansiedade , Estresse Psicológico , Tonsila do Cerebelo , Animais , Transtornos de Ansiedade , Comportamento Animal , Modelos Animais de Doenças , Masculino , Ratos , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA