Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38766208

RESUMO

Increased prevalence of multidrug resistant bacterial infections has sparked interest in alternative antimicrobials, including bacteriophages (phages). Limited understanding of the phage infection process hampers our ability to utilize phages to their full therapeutic potential. To understand phage infection dynamics we performed proteomics on Enterococcus faecalis infected with the phage VPE25. We discovered numerous uncharacterized phage proteins are produced during phage infection of Enterococcus faecalis. Additionally, we identified hundreds of changes in bacterial protein abundances during infection. One such protein, enterococcal gelatinase (GelE), an fsr quorum sensing regulated protease involved in biofilm formation and virulence, was reduced during VPE25 infection. Plaque assays showed that mutation of either the fsrA or gelE resulted in plaques with a "halo" morphology and significantly larger diameters, suggesting decreased protection from phage infection. GelE-associated protection during phage infection is dependent on the murein hydrolase regulator LrgA and antiholin-like protein LrgB, whose expression have been shown to be regulated by GelE. Our work may be leveraged in the development of phage therapies that can modulate the production of GelE thereby altering biofilm formation and decreasing E. faecalis virulence.

2.
Microbiol Resour Announc ; 13(3): e0121723, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38294211

RESUMO

Here, we report the annotated genome of enterococcal phage G01. The G01 genome is 41,189 bp in length and contains 67 predicted open reading frames. Host range analysis revealed G01 can infect 28.6% (6/21) of Enterococcus faecalis strains tested and appears to not require the enterococcal phage infection protein PIPEF.

3.
Artigo em Inglês | MEDLINE | ID: mdl-33649110

RESUMO

Enterococcus faecium, a commensal of the human intestine, has emerged as a hospital-adapted, multi-drug resistant (MDR) pathogen. Bacteriophages (phages), natural predators of bacteria, have regained attention as therapeutics to stem the rise of MDR bacteria. Despite their potential to curtail MDR E. faecium infections, the molecular events governing E. faecium-phage interactions remain largely unknown. Such interactions are important to delineate because phage selective pressure imposed on E. faecium will undoubtedly result in phage resistance phenotypes that could threaten the efficacy of phage therapy. In an effort to understand the emergence of phage resistance in E. faecium, three newly isolated lytic phages were used to demonstrate that E. faecium phage resistance is conferred through an array of cell wall-associated molecules, including secreted antigen A (SagA), enterococcal polysaccharide antigen (Epa), wall teichoic acids, capsule, and an arginine-aspartate-aspartate (RDD) protein of unknown function. We find that capsule and Epa are important for robust phage adsorption and that phage resistance mutations in sagA, epaR, and epaX enhance E. faecium susceptibility to ceftriaxone, an antibiotic normally ineffective due to its low affinity for enterococcal penicillin binding proteins. Consistent with these findings, we provide evidence that phages potently synergize with cell wall (ceftriaxone and ampicillin) and membrane-acting (daptomycin) antimicrobials to slow or completely inhibit the growth of E. faecium Our work demonstrates that the evolution of phage resistance comes with fitness defects resulting in drug sensitization and that lytic phages could serve as effective antimicrobials for the treatment of E. faecium infections.

4.
J Bacteriol ; 203(21): e0017721, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34370561

RESUMO

Enterococci are Gram-positive bacteria that have evolved to thrive as both commensals and pathogens, largely due to their accumulation of mobile genetic elements via horizontal gene transfer (HGT). Common agents of HGT include plasmids, transposable elements, and temperate bacteriophages. These vehicles of HGT have facilitated the evolution of the enterococci, specifically Enterococcus faecalis and Enterococcus faecium, into multidrug-resistant hospital-acquired pathogens. On the other hand, commensal strains of Enterococcus harbor CRISPR-Cas systems that prevent the acquisition of foreign DNA, restricting the accumulation of mobile genetic elements. In this review, we discuss enterococcal mobile genetic elements by highlighting their contributions to bacterial fitness, examine the impact of CRISPR-Cas on their acquisition, and identify key areas of research that can improve our understanding of enterococcal evolution and ecology.


Assuntos
Enterococcus faecalis/genética , Enterococcus faecium/genética , Sequências Repetitivas Dispersas/genética , Evolução Biológica , Sistemas CRISPR-Cas
5.
Annu Rev Virol ; 8(1): 133-158, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34033501

RESUMO

Viral metagenomics has expanded our knowledge of the ecology of uncultured viruses, within both environmental (e.g., terrestrial and aquatic) and host-associated (e.g., plants and animals, including humans) contexts. Here, we emphasize the implementation of an ecological framework in viral metagenomic studies to address questions in virology rarely considered ecological, which can change our perception of viruses and how they interact with their surroundings. An ecological framework explicitly considers diverse variants of viruses in populations that make up communities of interacting viruses, with ecosystem-level effects. It provides a structure for the study of the diversity, distributions, dynamics, and interactions of viruses with one another, hosts, and the ecosystem, including interactions with abiotic factors. An ecological framework in viral metagenomics stands poised to broadly expand our knowledge in basic and applied virology. We highlight specific fundamental research needs to capitalize on its potential and advance the field.


Assuntos
Metagenômica , Vírus , Animais , Ecossistema , Genoma Viral , Humanos , Metagenoma , Plantas , Vírus/genética
6.
Cell Host Microbe ; 29(5): 726-739.e5, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33957082

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease characterized in seropositive individuals by the presence of anti-cyclic citrullinated protein (CCP) antibodies. RA is linked to the intestinal microbiota, yet the association of microbes with CCP serology and their contribution to RA is unclear. We describe intestinal phage communities of individuals at risk for developing RA, with or without anti-CCP antibodies, whose first-degree relatives have been diagnosed with RA. We show that at-risk individuals harbor intestinal phage compositions that diverge based on CCP serology, are dominated by Streptococcaceae, Bacteroidaceae, and Lachnospiraceae phages, and may originate from disparate ecosystems. These phages encode unique repertoires of auxiliary metabolic genes, which associate with anti-CCP status, suggesting that these phages directly influence the metabolic and immunomodulatory capability of the microbiota. This work sets the stage for the use of phages as preclinical biomarkers and provides insight into a possible microbial-based causation of RA disease development.


Assuntos
Artrite Reumatoide/virologia , Bacteriófagos/isolamento & purificação , Intestinos/virologia , Adulto , Idoso , Anticorpos Antiproteína Citrulinada/sangue , Artrite Reumatoide/sangue , Artrite Reumatoide/metabolismo , Bacteriófagos/classificação , Bacteriófagos/genética , Feminino , Humanos , Masculino , Microbiota , Pessoa de Meia-Idade , Filogenia , Fatores de Risco
7.
Methods Protoc ; 4(1)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498244

RESUMO

MicroRNAs (miRNAs) represent a family of short non-coding regulatory RNA molecules that are produced in a tissue and time-specific manner to orchestrate gene expression post-transcription. MiRNAs hybridize to target mRNA(s) to induce translation repression or mRNA degradation. Functional studies have demonstrated that miRNAs are engaged in virtually every physiological process and, consequently, miRNA dysregulations have been linked to multiple human pathologies. Thus, miRNA mimics and anti-miRNAs that restore miRNA expression or downregulate aberrantly expressed miRNAs, respectively, are highly sought-after therapeutic strategies for effective manipulation of miRNA levels. In this regard, carrier vehicles that facilitate proficient and safe delivery of miRNA-based therapeutics are fundamental to the clinical success of these pharmaceuticals. Here, we highlight the strengths and weaknesses of current state-of-the-art viral and non-viral miRNA delivery systems and provide perspective on how these tools can be exploited to improve the outcomes of miRNA-based therapeutics.

8.
Microbiol Resour Announc ; 10(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446593

RESUMO

Group B Streptococcus (GBS) is an asymptomatic colonizer of the female reproductive tract but can cause maternal and neonatal infections and adverse pregnancy outcomes. Here, we closed the genome sequence of strain CJB111, a neonatal GBS clinical isolate from a case of late-onset bacteremia without focus (Houston, TX; 1990).

9.
PLoS Genet ; 17(1): e1009204, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33411815

RESUMO

Bacteriophages (phages) are being considered as alternative therapeutics for the treatment of multidrug resistant bacterial infections. Considering phages have narrow host-ranges, it is generally accepted that therapeutic phages will have a marginal impact on non-target bacteria. We have discovered that lytic phage infection induces transcription of type VIIb secretion system (T7SS) genes in the pathobiont Enterococcus faecalis. Membrane damage during phage infection induces T7SS gene expression resulting in cell contact dependent antagonism of different Gram positive bystander bacteria. Deletion of essB, a T7SS structural component, abrogates phage-mediated killing of bystanders. A predicted immunity gene confers protection against T7SS mediated inhibition, and disruption of its upstream LXG toxin gene rescues growth of E. faecalis and Staphylococcus aureus bystanders. Phage induction of T7SS gene expression and bystander inhibition requires IreK, a serine/threonine kinase, and OG1RF_11099, a predicted GntR-family transcription factor. Additionally, sub-lethal doses of membrane targeting and DNA damaging antibiotics activated T7SS expression independent of phage infection, triggering T7SS antibacterial activity against bystander bacteria. Our findings highlight how phage infection and antibiotic exposure of a target bacterium can affect non-target bystander bacteria and implies that therapies beyond antibiotics, such as phage therapy, could impose collateral damage to polymicrobial communities.


Assuntos
Bacteriófagos/genética , Farmacorresistência Bacteriana Múltipla/genética , Enterococcus faecalis/genética , Infecções por Bactérias Gram-Positivas/genética , Antibacterianos/efeitos adversos , Efeito Espectador , Enterococcus faecalis/patogenicidade , Enterococcus faecalis/virologia , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/terapia , Infecções por Bactérias Gram-Positivas/virologia , Especificidade de Hospedeiro/genética , Humanos , Sistemas de Secreção Tipo VII/genética
10.
Infect Immun ; 88(10)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32778611

RESUMO

Enterococcus faecalis is a Gram-positive commensal bacterium native to the gastrointestinal tract and an opportunistic pathogen of increasing clinical concern. E. faecalis also colonizes the female reproductive tract, and reports suggest vaginal colonization increases following antibiotic treatment or in patients with aerobic vaginitis. Currently, little is known about specific factors that promote E. faecalis vaginal colonization and subsequent infection. We modified an established mouse vaginal colonization model to explore E. faecalis vaginal carriage and demonstrate that both vancomycin-resistant and -sensitive strains colonize the murine vaginal tract. Following vaginal colonization, we observed E. faecalis in vaginal, cervical, and uterine tissue. A mutant lacking endocarditis- and biofilm-associated pili (Ebp) exhibited a decreased ability to associate with human vaginal and cervical cells in vitro but did not contribute to colonization in vivo Thus, we screened a low-complexity transposon (Tn) mutant library to identify novel genes important for E. faecalis colonization and persistence in the vaginal tract. This screen revealed 383 mutants that were underrepresented during vaginal colonization at 1, 5, and 8 days postinoculation compared to growth in culture medium. We confirmed that mutants deficient in ethanolamine catabolism or in the type VII secretion system were attenuated in persisting during vaginal colonization. These results reveal the complex nature of vaginal colonization and suggest that multiple factors contribute to E. faecalis persistence in the reproductive tract.


Assuntos
Aderência Bacteriana/fisiologia , Enterococcus faecalis/fisiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Vagina/microbiologia , Animais , Aderência Bacteriana/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular , Enterococcus faecalis/genética , Enterococcus faecalis/crescimento & desenvolvimento , Etanolamina/metabolismo , Feminino , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Genitália Feminina/microbiologia , Genoma Bacteriano/genética , Humanos , Camundongos , Mutagênese , Mutação , Sistemas de Secreção Tipo VII/genética , Sistemas de Secreção Tipo VII/metabolismo
11.
mBio ; 11(2)2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32127456

RESUMO

Bacteriophages (phages) have been proposed as alternative therapeutics for the treatment of multidrug-resistant bacterial infections. However, there are major gaps in our understanding of the molecular events in bacterial cells that control how bacteria respond to phage predation. Using the model organism Enterococcus faecalis, we used two distinct genomic approaches, namely, transposon library screening and RNA sequencing, to investigate the interaction of E. faecalis with a virulent phage. We discovered that a transcription factor encoding a LytR family response regulator controls the expression of enterococcal polysaccharide antigen (epa) genes that are involved in phage infection and bacterial fitness. In addition, we discovered that DNA mismatch repair mutants rapidly evolve phage adsorption deficiencies, underpinning a molecular basis for epa mutation during phage infection. Transcriptomic profiling of phage-infected E. faecalis revealed broad transcriptional changes influencing viral replication and progeny burst size. We also demonstrate that phage infection alters the expression of bacterial genes associated with intra- and interbacterial interactions, including genes involved in quorum sensing and polymicrobial competition. Together, our results suggest that phage predation has the potential to influence complex microbial behavior and may dictate how bacteria respond to external environmental stimuli. These responses could have collateral effects (positive or negative) on microbial communities, such as the host microbiota, during phage therapy.IMPORTANCE We lack fundamental understanding of how phage infection influences bacterial gene expression and, consequently, how bacterial responses to phage infection affect the assembly of polymicrobial communities. Using parallel genomic approaches, we have discovered novel transcriptional regulators and metabolic genes that influence phage infection. The integration of whole-genome transcriptomic profiling during phage infection has revealed the differential regulation of genes important for group behaviors and polymicrobial interactions. Our work suggests that therapeutic phages could more broadly influence bacterial community composition outside their intended host targets.


Assuntos
Bacteriófagos/fisiologia , Enterococcus/fisiologia , Enterococcus/virologia , Genômica , Interações Microbianas , Alelos , Evolução Biológica , Reparo de Erro de Pareamento de DNA , Replicação do DNA , Elementos de DNA Transponíveis , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genômica/métodos , Mutação
12.
mSphere ; 4(4)2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31341074

RESUMO

CRISPR-Cas systems are barriers to horizontal gene transfer (HGT) in bacteria. Little is known about CRISPR-Cas interactions with conjugative plasmids, and studies investigating CRISPR-Cas/plasmid interactions in in vivo models relevant to infectious disease are lacking. These are significant gaps in knowledge because conjugative plasmids disseminate antibiotic resistance genes among pathogens in vivo, and it is essential to identify strategies to reduce the spread of these elements. We use enterococci as models to understand the interactions of CRISPR-Cas with conjugative plasmids. Enterococcus faecalis is a native colonizer of the mammalian intestine and harbors pheromone-responsive plasmids (PRPs). PRPs mediate inter- and intraspecies transfer of antibiotic resistance genes. We assessed E. faecalis CRISPR-Cas anti-PRP activity in the mouse intestine and under different in vitro conditions. We observed striking differences in CRISPR-Cas efficiency in vitro versus in vivo With few exceptions, CRISPR-Cas blocked intestinal PRP dissemination, while in vitro, the PRP frequently escaped CRISPR-Cas defense. Our results further the understanding of CRISPR-Cas biology by demonstrating that standard in vitro experiments do not adequately model the in vivo antiplasmid activity of CRISPR-Cas. Additionally, our work identifies several variables that impact the apparent in vitro antiplasmid activity of CRISPR-Cas, including planktonic versus biofilm settings, different donor-to-recipient ratios, production of a plasmid-encoded bacteriocin, and the time point at which matings are sampled. Our results are clinically significant because they demonstrate that barriers to HGT encoded by normal (healthy) human microbiota can have significant impacts on in vivo antibiotic resistance dissemination.IMPORTANCE CRISPR-Cas is a type of immune system in bacteria that is hypothesized to be a natural impediment to the spread of antibiotic resistance genes. In this study, we directly assessed the impact of CRISPR-Cas on antibiotic resistance dissemination in the mammalian intestine and under different in vitro conditions. We observed a robust effect of CRISPR-Cas on in vivo but not in vitro dissemination of antibiotic resistance plasmids in the native mammalian intestinal colonizer Enterococcus faecalis We conclude that standard in vitro experiments currently do not appropriately model the in vivo conditions where antibiotic resistance dissemination occurs between E. faecalis strains in the intestine. Moreover, our results demonstrate that CRISPR-Cas present in native members of the mammalian intestinal microbiota can block the spread of antibiotic resistance plasmids.


Assuntos
Sistemas CRISPR-Cas , Conjugação Genética , Farmacorresistência Bacteriana , Enterococcus faecalis/genética , Transferência Genética Horizontal , Intestinos/microbiologia , Animais , Antibacterianos/farmacologia , Enterococcus faecalis/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Plasmídeos/genética
13.
Infect Immun ; 87(6)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30936157

RESUMO

Enterococcus faecalis is a human intestinal pathobiont with intrinsic and acquired resistance to many antibiotics, including vancomycin. Nature provides a diverse and virtually untapped repertoire of bacterial viruses, or bacteriophages (phages), that could be harnessed to combat multidrug-resistant enterococcal infections. Bacterial phage resistance represents a potential barrier to the implementation of phage therapy, emphasizing the importance of investigating the molecular mechanisms underlying the emergence of phage resistance. Using a cohort of 19 environmental lytic phages with tropism against E. faecalis, we found that these phages require the enterococcal polysaccharide antigen (Epa) for productive infection. Epa is a surface-exposed heteroglycan synthesized by enzymes encoded by both conserved and strain-specific genes. We discovered that exposure to phage selective pressure favors mutation in nonconserved epa genes both in culture and in a mouse model of intestinal colonization. Despite gaining phage resistance, epa mutant strains exhibited a loss of resistance to cell wall-targeting antibiotics. Finally, we show that an E. faecalisepa mutant strain is deficient in intestinal colonization, cannot expand its population upon antibiotic-driven intestinal dysbiosis, and fails to be efficiently transmitted to juvenile mice following birth. This study demonstrates that phage therapy could be used in combination with antibiotics to target enterococci within a dysbiotic microbiota. Enterococci that evade phage therapy by developing resistance may be less fit at colonizing the intestine and sensitized to vancomycin, preventing their overgrowth during antibiotic treatment.


Assuntos
Antibacterianos/farmacologia , Bacteriófagos/fisiologia , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/virologia , Enterococcus faecium/virologia , Infecções por Bactérias Gram-Positivas/terapia , Intestinos/microbiologia , Animais , Terapia Biológica , Enterococcus faecalis/imunologia , Enterococcus faecalis/fisiologia , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/imunologia , Enterococcus faecium/fisiologia , Feminino , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Vancomicina/farmacologia
14.
Cell Host Microbe ; 25(2): 175-176, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30763529

RESUMO

Intestinal cues driving prophage induction in the microbiota are largely unknown. In this issue of Cell Host & Microbe, Oh et al. (2018) reveal that dietary fructose- and microbiota-derived short-chain fatty acids promote AckA-mediated acetic acid biosynthesis, triggering a stress response that facilities phage production.


Assuntos
Bacteriófagos , Limosilactobacillus reuteri , Microbiota , Ácidos Graxos , Ácidos Graxos Voláteis , Frutose , Açúcares , Ativação Viral
15.
Front Microbiol ; 9: 1394, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29997604

RESUMO

For decades, a wealth of information has been acquired to define how host associated microbial communities contribute to health and disease. Within the human microbiota this has largely focused on bacteria, yet there is a myriad of viruses that occupy various tissue sites, the most abundant being bacteriophages that infect bacteria. Animal hosts are colonized with niche specific microbial communities where bacteria are continuously co-evolving with phages. Bacterial growth, metabolic activity, pathogenicity, antibiotic resistance, interspecies competition and evolution can all be influenced by phage infection and the beneficial nature of such interactions suggests that to an extent phages are tolerated by their hosts. With the understanding that phage-specific host-microbe interactions likely contribute to bacterial interactions with their mammalian hosts, phages and their communities may also impact aspects of mammalian health and disease that have gone unrecognized. Here, we review recent progress in understanding how bacteria acquire and tolerate phage in both pure culture and within complex communities. We apply these findings to discuss how intra-body phages interact with bacteria to influence their eukaryotic hosts through potential contributions to microbial homeostasis, mucosal immunity, immune tolerance and autoimmunity.

16.
Mol Microbiol ; 108(1): 90-100, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29381237

RESUMO

Under iron limitation, bacteria scavenge ferric (Fe3+ ) iron bound to siderophores or other chelates from the environment to fulfill their nutritional requirement. In gram-negative bacteria, the siderophore uptake system prototype consists of an outer membrane transporter, a periplasmic binding protein and a cytoplasmic membrane transporter, each specific for a single ferric siderophore or siderophore family. Here, we show that spontaneous single gain-of-function missense mutations in outer membrane transporter genes of Bradyrhizobium japonicum were sufficient to confer on cells the ability to use synthetic or natural iron siderophores, suggesting that selectivity is limited primarily to the outer membrane and can be readily modified. Moreover, growth on natural or synthetic chelators required the cytoplasmic membrane ferrous (Fe2+ ) iron transporter FeoB, suggesting that iron is both dissociated from the chelate and reduced to the ferrous form within the periplasm prior to cytoplasmic entry. The data suggest rapid adaptation to environmental iron by facile mutation of selective outer membrane transporter genes and by non-selective uptake components that do not require mutation to accommodate new iron sources.


Assuntos
Proteínas de Bactérias/metabolismo , Bradyrhizobium/metabolismo , Compostos Férricos/metabolismo , Compostos Ferrosos/metabolismo , Ferro/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Adaptação Biológica/genética , Adaptação Biológica/fisiologia , Proteínas de Bactérias/genética , Bradyrhizobium/genética , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/metabolismo , Citoplasma/metabolismo , Mutação com Ganho de Função , Proteínas de Membrana Transportadoras/genética , Mutação de Sentido Incorreto , Periplasma/metabolismo , Sideróforos/genética , Sideróforos/metabolismo , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA