Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Prod Res ; : 1-9, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37322993

RESUMO

Murraya koenigii leaves are widely used as a spice and also have several biological activities. The major active constituents are carbazole alkaloids. Quantitation by HPLC or HPTLC requires pure marker compounds, whereas nuclear magnetic resonance spectroscopy can be used as a quantitative technique without the requirement of a pure marker compound. An alkaloid-rich fraction was prepared from the leaves and a validated qNMR method was developed for the quantitation of nine carbazole alkaloids, namely mahanimbine, girinimbine, koenimbine, koenine, kurrayam, mukonicine, isomahanimbine, euchristine B and bismahanine. One of the major compounds, koenimbine, was isolated and quantified by HPTLC to compare the results. The results obtained by qNMR were compared with the reported yields of these compounds.

2.
Nat Prod Res ; 37(10): 1651-1655, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35924731

RESUMO

Natural products have contributed immensely towards the treatment of various diseases including diabetes. Here, a database of small molecules from nature possessing antidiabetic properties was analysed and shortlisted according to their structural diversity. Later, those structures were screened by in-silico docking studies to understand their affinity towards glucagon-like peptide-1 (GLP-1) receptor. The selected molecules were isolated and investigated further by integrated in-vitro and in-silico approaches. Alpha-mangostin was found to be suitable due to its excellent docking score and isolation yield. A pancreatic beta cell line was used to test the activity of alpha-mangostin and observed a 3-fold increase in insulin secretion compared to 15 mM glucose control. Further, in-silico molecular dynamics simulations studies have validated its target by showing conformational changes at the functionally active part of the GLP-1 receptor. This screening strategy can be applied to identify pertinent natural products rapidly for various therapeutic targets.


Assuntos
Diabetes Mellitus , Glucagon , Humanos , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1 , Insulina/metabolismo , Receptores de Glucagon/agonistas , Receptores de Glucagon/metabolismo , Biologia Computacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA