Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Neurobiol Dis ; 190: 106369, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38049012

RESUMO

Sleep-wake disturbances are common in neurodegenerative diseases and may occur years before the clinical diagnosis, potentially either representing an early stage of the disease itself or acting as a pathophysiological driver. Therefore, discovering biomarkers that identify individuals with sleep-wake disturbances who are at risk of developing neurodegenerative diseases will allow early diagnosis and intervention. Given the association between sleep and neurodegeneration, the most frequently analyzed fluid biomarkers in people with sleep-wake disturbances to date include those directly associated with neurodegeneration itself, such as neurofilament light chain, phosphorylated tau, amyloid-beta and alpha-synuclein. Abnormalities in these biomarkers in patients with sleep-wake disturbances are considered as evidence of an underlying neurodegenerative process. Levels of hormonal sleep-related biomarkers such as melatonin, cortisol and orexin are often abnormal in patients with clinical neurodegenerative diseases, but their relationships with the more standard neurodegenerative biomarkers remain unclear. Similarly, it is unclear whether other chronobiological/circadian biomarkers, such as disrupted clock gene expression, are causal factors or a consequence of neurodegeneration. Current data would suggest that a combination of fluid biomarkers may identify sleep-wake disturbances that are most predictive for the risk of developing neurodegenerative disease with more optimal sensitivity and specificity.


Assuntos
Doenças Neurodegenerativas , Transtornos do Sono-Vigília , Humanos , Sono/fisiologia , Peptídeos beta-Amiloides/metabolismo , Transtornos do Sono-Vigília/diagnóstico , Transtornos do Sono-Vigília/etiologia , Transtornos do Sono-Vigília/metabolismo , Biomarcadores
2.
Front Neurosci ; 17: 1297984, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033541

RESUMO

Alzheimer's disease (AD) is the most common form of dementia. AD is a progressive neurodegenerative disorder characterized by cognitive dysfunction, including learning and memory deficits, and behavioral changes. Neuropathology hallmarks of AD such as amyloid beta (Aß) plaques and neurofibrillary tangles containing the neuron-specific protein tau is associated with changes in fluid biomarkers including Aß, phosphorylated tau (p-tau)-181, p-tau 231, p-tau 217, glial fibrillary acidic protein (GFAP), and neurofilament light (NFL). Another pathological feature of AD is neural damage and hyperactivation of astrocytes, that can cause increased pro-inflammatory mediators and oxidative stress. In addition, reduced brain glucose metabolism and mitochondrial dysfunction appears up to 15 years before the onset of clinical AD symptoms. As glucose utilization is compromised in the brain of patients with AD, ketone bodies (KBs) may serve as an alternative source of energy. KBs are generated from the ß-oxidation of fatty acids, which are enhanced following consumption of ketogenic diets with high fat, moderate protein, and low carbohydrate. KBs have been shown to cross the blood brain barrier to improve brain energy metabolism. This review comprehensively summarizes the current literature on how increasing KBs support brain energy metabolism. In addition, for the first time, this review discusses the effects of ketogenic diet on the putative AD biomarkers such as Aß, tau (mainly p-tau 181), GFAP, and NFL, and discusses the role of KBs on neuroinflammation, oxidative stress, and mitochondrial metabolism.

3.
NPJ Aging ; 9(1): 17, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666862

RESUMO

Osteoporosis and Alzheimer's disease (AD) mainly affect older individuals, and the possibility of an underlying link contributing to their shared epidemiological features has rarely been investigated. In the current study, we investigated the association between levels of plasma sclerostin (SOST), a protein primarily produced by bone, and brain amyloid-beta (Aß) load, a pathological hallmark of AD. The study enrolled participants meeting a set of screening inclusion and exclusion criteria and were stratified into Aß- (n = 65) and Aß+ (n = 35) according to their brain Aß load assessed using Aß-PET (positron emission tomography) imaging. Plasma SOST levels, apolipoprotein E gene (APOE) genotype and several putative AD blood-biomarkers including Aß40, Aß42, Aß42/Aß40, neurofilament light (NFL), glial fibrillary acidic protein (GFAP), total tau (t-tau) and phosphorylated tau (p-tau181 and p-tau231) were detected and compared. It was found that plasma SOST levels were significantly higher in the Aß+ group (71.49 ± 25.00 pmol/L) compared with the Aß- group (56.51 ± 22.14 pmol/L) (P < 0.01). Moreover, Spearman's correlation analysis showed that plasma SOST concentrations were positively correlated with brain Aß load (ρ = 0.321, P = 0.001). Importantly, plasma SOST combined with Aß42/Aß40 ratio significantly increased the area under the curve (AUC) when compared with using Aß42/Aß40 ratio alone (AUC = 0.768 vs 0.669, P = 0.027). In conclusion, plasma SOST levels are elevated in cognitively unimpaired older adults at high risk of AD and SOST could complement existing plasma biomarkers to assist in the detection of preclinical AD.

4.
J Alzheimers Dis ; 92(2): 615-628, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776057

RESUMO

BACKGROUND: Astrocyte reactivity is an early event along the Alzheimer's disease (AD) continuum. Plasma glial fibrillary acidic protein (GFAP), posited to reflect astrocyte reactivity, is elevated across the AD continuum from preclinical to dementia stages. Monoamine oxidase-B (MAO-B) is also elevated in reactive astrocytes observed using 18F-SMBT-1 PET in AD. OBJECTIVE: The objective of this study was to evaluate the association between the abovementioned astrocyte reactivity biomarkers. METHODS: Plasma GFAP and Aß were measured using the Simoa® platform in participants who underwent brain 18F-SMBT-1 and Aß-PET imaging, comprising 54 healthy control (13 Aß-PET+ and 41 Aß-PET-), 11 mild cognitively impaired (3 Aß-PET+ and 8 Aß-PET-) and 6 probable AD (5 Aß-PET+ and 1 Aß-PET-) individuals. Linear regressions were used to assess associations of interest. RESULTS: Plasma GFAP was associated with 18F-SMBT-1 signal in brain regions prone to early Aß deposition in AD, such as the supramarginal gyrus (SG), posterior cingulate (PC), lateral temporal (LT) and lateral occipital cortex (LO). After adjusting for age, sex, APOE ɛ4 genotype, and soluble Aß (plasma Aß42/40 ratio), plasma GFAP was associated with 18F-SMBT-1 signal in the SG, PC, LT, LO, and superior parietal cortex (SP). On adjusting for age, sex, APOE ɛ4 genotype and insoluble Aß (Aß-PET), plasma GFAP was associated with 18F-SMBT-1 signal in the SG. CONCLUSION: There is an association between plasma GFAP and regional 18F-SMBT-1 PET, and this association appears to be dependent on brain Aß load.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Astrócitos/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Disfunção Cognitiva/genética , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Biomarcadores/metabolismo , Apolipoproteínas E/metabolismo , Proteínas tau/metabolismo
5.
Nutr Rev ; 81(9): 1144-1162, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-36633304

RESUMO

CONTEXT: In preclinical Alzheimer's disease (AD), the brain gradually becomes insulin resistant. As a result, brain glucose utilization is compromised, causing a cellular energy deficit that leads to the accumulation of free radicals, which increases inflammation and damages neurons. When glucose utilization is impaired, ketone bodies offer an alternative energy source. Ketone bodies are synthesized from fats, obtained from either the diet or adipose tissue. Dietary medium-chain fatty acids (MCFAs), which are preferentially metabolized into ketone bodies, have the potential to supply the insulin-resistant brain with energy. OBJECTIVE: This systematic review and meta-analysis aims to review the effect of MCFA supplements on circulating ketone bodies and cognition in individuals with subjective cognitive decline, mild cognitive impairment, and AD. DATA SOURCES: A comprehensive search of electronic databases was performed on August 12, 2019, to retrieve all publications meeting the inclusion criteria. Alerts were then set to identify any publications after the search date up until January 31, 2021. DATA EXTRACTION: Data were extracted by 2 authors and assessed by a third. In total, 410 publications were identified, of which 16 (n = 17 studies) met the inclusion criteria. DATA ANALYSIS: All studies assessing change in levels of blood ketone bodies due to MCFA supplementation (n = 12) reported a significant increase. Cognition outcomes (measured in 13 studies), however, varied, ranging from no improvement (n = 4 studies) to improvement (n = 8 studies) or improvement only in apolipoprotein E allele 4 (APOE ε4) noncarriers (n = 2 studies). One study reported an increase in regional cerebral blood flow in APOE ε4 noncarriers and another reported an increase in energy metabolism in the brain. CONCLUSION: MCFA supplementation increases circulating ketone body levels, resulting in increased brain energy metabolism. Further research is required to determine whether this MCFA-mediated increase in brain energy metabolism improves cognition. SYSTEMATIC REVIEW REGISTRATION: PROSPERO registration number CRD42019146967.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/prevenção & controle , Apolipoproteína E4 , Ácidos Graxos/metabolismo , Corpos Cetônicos/metabolismo , Corpos Cetônicos/uso terapêutico , Insulina , Glucose/metabolismo
6.
Alzheimers Dement ; 19(4): 1117-1134, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36574591

RESUMO

INTRODUCTION: Plasma amyloid beta (Aß)1-42/Aß1-40 ratio, phosphorylated-tau181 (p-tau181), glial fibrillary acidic protein (GFAP), and neurofilament light (NfL) are putative blood biomarkers for Alzheimer's disease (AD). However, head-to-head cross-sectional and longitudinal comparisons of the aforementioned biomarkers across the AD continuum are lacking. METHODS: Plasma Aß1-42, Aß1-40, p-tau181, GFAP, and NfL were measured utilizing the Single Molecule Array (Simoa) platform and compared cross-sectionally across the AD continuum, wherein Aß-PET (positron emission tomography)-negative cognitively unimpaired (CU Aß-, n = 81) and mild cognitive impairment (MCI Aß-, n = 26) participants were compared with Aß-PET-positive participants across the AD continuum (CU Aß+, n = 39; MCI Aß+, n = 33; AD Aß+, n = 46) from the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL) cohort. Longitudinal plasma biomarker changes were also assessed in MCI (n = 27) and AD (n = 29) participants compared with CU (n = 120) participants. In addition, associations between baseline plasma biomarker levels and prospective cognitive decline and Aß-PET load were assessed over a 7 to 10-year duration. RESULTS: Lower plasma Aß1-42/Aß1-40 ratio and elevated p-tau181 and GFAP were observed in CU Aß+, MCI Aß+, and AD Aß+, whereas elevated plasma NfL was observed in MCI Aß+ and AD Aß+, compared with CU Aß- and MCI Aß-. Among the aforementioned plasma biomarkers, for models with and without AD risk factors (age, sex, and apolipoprotein E (APOE) ε4 carrier status), p-tau181 performed equivalent to or better than other biomarkers in predicting a brain Aß-/+ status across the AD continuum. However, for models with and without the AD risk factors, a biomarker panel of Aß1-42/Aß1-40, p-tau181, and GFAP performed equivalent to or better than any of the biomarkers alone in predicting brain Aß-/+ status across the AD continuum. Longitudinally, plasma Aß1-42/Aß1-40, p-tau181, and GFAP were altered in MCI compared with CU, and plasma GFAP and NfL were altered in AD compared with CU. In addition, lower plasma Aß1-42/Aß1-40 and higher p-tau181, GFAP, and NfL were associated with prospective cognitive decline and lower plasma Aß1-42/Aß1-40, and higher p-tau181 and GFAP were associated with increased Aß-PET load prospectively. DISCUSSION: These findings suggest that plasma biomarkers are altered cross-sectionally and longitudinally, along the AD continuum, and are prospectively associated with cognitive decline and brain Aß-PET load. In addition, although p-tau181 performed equivalent to or better than other biomarkers in predicting an Aß-/+ status across the AD continuum, a panel of biomarkers may have superior Aß-/+ status predictive capability across the AD continuum. HIGHLIGHTS: Area under the curve (AUC) of p-tau181 ≥ AUC of Aß42/40, GFAP, NfL in predicting PET Aß-/+ status (Aß-/+).  AUC of Aß42/40+p-tau181+GFAP panel ≥ AUC of Aß42/40/p-tau181/GFAP/NfL for Aß-/+.  Longitudinally, Aß42/40, p-tau181, and GFAP were altered in MCI versus CU.  Longitudinally, GFAP and NfL were altered in AD versus CU.  Aß42/40, p-tau181, GFAP, and NfL are associated with prospective cognitive decline.  Aß42/40, p-tau181, and GFAP are associated with increased PET Aß load prospectively.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides , Proteína Glial Fibrilar Ácida , Estudos Transversais , Filamentos Intermediários , Estudos Longitudinais , Estudos Prospectivos , Austrália , Apolipoproteína E4 , Disfunção Cognitiva/diagnóstico por imagem , Biomarcadores , Proteínas tau
7.
Alzheimers Dement ; 19(7): 2790-2804, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36576155

RESUMO

BACKGROUND: Glial fibrillary acidic protein (GFAP) is a promising candidate blood-based biomarker for Alzheimer's disease (AD) diagnosis and prognostication. The timing of its disease-associated changes, its clinical correlates, and biofluid-type dependency will influence its clinical utility. METHODS: We evaluated plasma, serum, and cerebrospinal fluid (CSF) GFAP in families with autosomal dominant AD (ADAD), leveraging the predictable age at symptom onset to determine changes by stage of disease. RESULTS: Plasma GFAP elevations appear a decade before expected symptom onset, after amyloid beta (Aß) accumulation and prior to neurodegeneration and cognitive decline. Plasma GFAP distinguished Aß-positive from Aß-negative ADAD participants and showed a stronger relationship with Aß load in asymptomatic than symptomatic ADAD. Higher plasma GFAP was associated with the degree and rate of neurodegeneration and cognitive impairment. Serum GFAP showed similar relationships, but these were less pronounced for CSF GFAP. CONCLUSION: Our findings support a role for plasma GFAP as a clinical biomarker of Aß-related astrocyte reactivity that is associated with cognitive decline and neurodegeneration. HIGHLIGHTS: Plasma glial fibrillary acidic protein (GFAP) elevations appear a decade before expected symptom onset in autosomal dominant Alzheimer's disease (ADAD). Plasma GFAP was associated to amyloid positivity in asymptomatic ADAD. Plasma GFAP increased with clinical severity and predicted disease progression. Plasma and serum GFAP carried similar information in ADAD, while cerebrospinal fluid GFAP did not.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Biomarcadores/líquido cefalorraquidiano , Cognição , Proteína Glial Fibrilar Ácida , Tomografia por Emissão de Pósitrons , Proteínas tau/líquido cefalorraquidiano
8.
J Neurochem ; 163(1): 53-67, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36000528

RESUMO

Cholesterol levels have been repeatedly linked to Alzheimer's Disease (AD), suggesting that high levels could be detrimental, but this effect is likely attributed to Low-Density Lipoprotein (LDL) cholesterol. On the other hand, High-Density Lipoproteins (HDL) cholesterol levels have been associated with reduced brain amyloidosis and improved cognitive function. However, recent findings have suggested that HDL-functionality, which depends upon the HDL-cargo proteins associated with HDL, rather than HDL levels, appears to be the key factor, suggesting a quality over quantity status. In this report, we have assessed the HDL-cargo (Cholesterol, ApoA-I, ApoA-II, ApoC-I, ApoC-III, ApoD, ApoE, ApoH, ApoJ, CRP, and SAA) in stable healthy control (HC), healthy controls who will convert to MCI/AD (HC-Conv) and AD patients (AD). Compared to HC we observed an increased cholesterol/ApoA-I ratio in AD and HC-Conv, as well as an increased ApoD/ApoA-I ratio and a decreased ApoA-II/ApoA-I ratio in AD. Higher cholesterol/ApoA-I ratio was also associated with lower cortical grey matter volume and higher ventricular volume, while higher ApoA-II/ApoA-I and ApoJ/ApoA-I ratios were associated with greater cortical grey matter volume (and for ApoA-II also with greater hippocampal volume) and smaller ventricular volume. Additionally, in a clinical status-independent manner, the ApoE/ApoA-I ratio was significantly lower in APOE ε4 carriers and lowest in APOE ε4 homozygous. Together, these data indicate that in AD patients the composition of HDL is altered, which may affect HDL functionality, and such changes are associated with altered regional brain volumetric data.


Assuntos
Doença de Alzheimer , Lipoproteínas HDL , Apolipoproteína A-I/metabolismo , Apolipoproteína A-II/metabolismo , Apolipoproteína C-III/metabolismo , Apolipoproteína E4/metabolismo , Apolipoproteínas E/metabolismo , Encéfalo/metabolismo , Colesterol/metabolismo , Humanos , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo
9.
Front Endocrinol (Lausanne) ; 13: 915449, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795150

RESUMO

Aims: This study aimed to determine the association of plasma neurofilament light (NfL), a marker of neurodegeneration, with diabetes status and glycaemic parameters in people with normal glycaemia (NG), pre-diabetes (PD) and type 2 diabetes (T2D). Methods: Clinical and descriptive data for the diagnostic groups, NG (n=30), PD (n=48) and T2D (n=29), aged between 40 and 75 years were included in this cross-sectional analysis. Plasma NfL levels were analyzed using the ultra-sensitive single-molecule array (Simoa) platform. Results: A positive correlation was evident between plasma NfL and fasting glucose (r = 0.2824; p = 0.0032). Plasma NfL levels were not correlated with fasting insulin and insulin resistance. Plasma Nfl levels were significantly different across the diabetes groups (T2D >PD >NG, p=0.0046). Post-hoc analysis indicated significantly higher plasma NfL levels in the T2D [12.4 (5.21) pg/mL] group than in the PD [10.2 (4.13) pg/mL] and NG [8.37 (5.65) pg/mL] groups. The relationship between diabetes status and NfL remained significant after adjusting for age, sex, BMI, HOMA-IR and physical activity (adjusted r2 = 0.271, p = 0.035). Conclusions: These results show biomarker evidence of neurodegeneration in adults at risk or with T2D. Larger sample size and longitudinal analysis are required to better understand the application of NfL in people with risk and overt T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Adulto , Idoso , Biomarcadores , Estudos Transversais , Controle Glicêmico , Humanos , Filamentos Intermediários , Pessoa de Meia-Idade
10.
Nat Commun ; 13(1): 3124, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668104

RESUMO

We integrated lipidomics and genomics to unravel the genetic architecture of lipid metabolism and identify genetic variants associated with lipid species putatively in the mechanistic pathway for coronary artery disease (CAD). We quantified 596 lipid species in serum from 4,492 individuals from the Busselton Health Study. The discovery GWAS identified 3,361 independent lipid-loci associations, involving 667 genomic regions (479 previously unreported), with validation in two independent cohorts. A meta-analysis revealed an additional 70 independent genomic regions associated with lipid species. We identified 134 lipid endophenotypes for CAD associated with 186 genomic loci. Associations between independent lipid-loci with coronary atherosclerosis were assessed in ∼456,000 individuals from the UK Biobank. Of the 53 lipid-loci that showed evidence of association (P < 1 × 10-3), 43 loci were associated with at least one lipid endophenotype. These findings illustrate the value of integrative biology to investigate the aetiology of atherosclerosis and CAD, with implications for other complex diseases.


Assuntos
Doença da Artéria Coronariana , Doença da Artéria Coronariana/genética , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Homeostase , Humanos , Lipidômica , Lipídeos , Polimorfismo de Nucleotídeo Único
11.
Neurobiol Dis ; 171: 105783, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35675895

RESUMO

Increasing evidence suggests that kynurenine pathway (KP) dyshomeostasis may promote disease progression in dementia. Studies in Alzheimer's disease (AD) patients confirm KP dyshomeostasis in plasma and cerebrospinal fluid (CSF) which correlates with amyloid-ß and tau pathology. Herein, we performed the first comprehensive study assessing baseline levels of KP metabolites in participants enrolling in the Australian Imaging Biomarkers Flagship Study of Aging. Our purpose was to test the hypothesis that changes in KP metabolites may be biomarkers of dementia processes that are largely silent. We used a cross-sectional analytical approach to assess non-progressors (N = 73); cognitively normal (CN) or mild cognitive impairment (MCI) participants at baseline and throughout the study, and progressors (N = 166); CN or MCI at baseline but progressing to either MCI or AD during the study. Significant KP changes in progressors included increased 3-hydroxyanthranilic acid (3-HAA) and 3-hydroxyanthranilic acid/anthranilic acid (3-HAA/AA) ratio, the latter having the largest effect on the odds of an individual being a progressor (OR 35.3; 95% CI between 14 and 104). 3-HAA levels were hence surprisingly bi-phasic, high in progressors but low in non-progressors or participants who had already transitioned to MCI or dementia. This is a new, unexpected and interesting result, as most studies of the KP in neurodegenerative disease show reduced 3-HAA/AA ratio after diagnosis. The neuroprotective metabolite picolinic acid was also significantly decreased while the neurotoxic metabolite 3-hydroxykynurenine increased in progressors. These results were significant even after adjustment for confounders. Considering the magnitude of the OR to predict change in cognition, it is important that these findings are replicated in other populations. Independent validation of our findings may confirm the utility of 3-HAA/AA ratio to predict change in cognition leading to dementia in clinical settings.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doenças Neurodegenerativas , Ácido 3-Hidroxiantranílico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Austrália , Biomarcadores , Disfunção Cognitiva/líquido cefalorraquidiano , Estudos Transversais , Progressão da Doença , Humanos , Cinurenina , Fragmentos de Peptídeos/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano
12.
Front Aging Neurosci ; 14: 771214, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35418852

RESUMO

Previous studies have indicated that physical activity may be beneficial in reducing the risk for Alzheimer's disease (AD), although the underlying mechanisms are not fully understood. The goal of this study was to evaluate the relationship between habitual physical activity levels and brain amyloid deposition and AD-related blood biomarkers (i.e., measured using a novel high-performance mass spectrometry-based assay), in apolipoprotein E (APOE) ε4 carriers and noncarriers. We evaluated 143 cognitively normal older adults, all of whom had brain amyloid deposition assessed using positron emission tomography and had their physical activity levels measured using the International Physical Activity Questionnaire (IPAQ). We observed an inverse correlation between brain amyloidosis and plasma beta-amyloid (Aß)1-42 but found no association between brain amyloid and plasma Aß1-40 and amyloid precursor protein (APP)669-711. Additionally, higher levels of physical activity were associated with lower plasma Aß1-40, Aß1-42, and APP669-711 levels in APOE ε4 noncarriers. The ratios of Aß1-40/Aß1-42 and APP669-711/Aß1-42, which have been associated with higher brain amyloidosis in previous studies, differed between APOE ε4 carriers and non-carriers. Taken together, these data indicate a complex relationship between physical activity and brain amyloid deposition and potential blood-based AD biomarkers in cognitively normal older adults. In addition, the role of APOE ε4 is still unclear, and more studies are necessary to bring further clarification.

13.
Alzheimers Dement ; 18(11): 2151-2166, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35077012

RESUMO

INTRODUCTION: The apolipoprotein E (APOE) genotype is the strongest genetic risk factor for late-onset Alzheimer's disease. However, its effect on lipid metabolic pathways, and their mediating effect on disease risk, is poorly understood. METHODS: We performed lipidomic analysis on three independent cohorts (the Australian Imaging, Biomarkers and Lifestyle [AIBL] flagship study, n = 1087; the Alzheimer's Disease Neuroimaging Initiative [ADNI] 1 study, n = 819; and the Busselton Health Study [BHS], n = 4384), and we defined associations between APOE ε2 and ε4 and 569 plasma/serum lipid species. Mediation analysis defined the proportion of the treatment effect of the APOE genotype mediated by plasma/serum lipid species. RESULTS: A total of 237 and 104 lipid species were associated with APOE ε2 and ε4, respectively. Of these 68 (ε2) and 24 (ε4) were associated with prevalent Alzheimer's disease. Individual lipid species or lipidomic models of APOE genotypes mediated up to 30% and 10% of APOE ε2 and ε4 treatment effect, respectively. DISCUSSION: Plasma lipid species mediate the treatment effect of APOE genotypes on Alzheimer's disease and as such represent a potential therapeutic target.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Apolipoproteína E2/genética , Austrália , Apolipoproteínas E/genética , Genótipo , Estudos de Coortes , Apolipoproteína E4/genética
14.
Alzheimers Dement ; 18(6): 1141-1154, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34494715

RESUMO

INTRODUCTION: This study involved a parallel comparison of the diagnostic and longitudinal monitoring potential of plasma glial fibrillary acidic protein (GFAP), total tau (t-tau), phosphorylated tau (p-tau181 and p-tau231), and neurofilament light (NFL) in preclinical Alzheimer's disease (AD). METHODS: Plasma proteins were measured using Simoa assays in cognitively unimpaired older adults (CU), with either absence (Aß-) or presence (Aß+) of brain amyloidosis. RESULTS: Plasma GFAP, t-tau, p-tau181, and p-tau231 concentrations were higher in Aß+ CU compared with Aß- CU cross-sectionally. GFAP had the highest effect size and area under the curve (AUC) in differentiating between Aß+ and Aß- CU; however, no statistically significant differences were observed between the AUCs of GFAP, p-tau181, and p-tau231, but all were significantly higher than the AUC of NFL, and the AUC of GFAP was higher than the AUC of t-tau. The combination of a base model (BM), comprising the AD risk factors, age, sex, and apolipoprotein E gene (APOE) ε4 status with GFAP was observed to have a higher AUC (>90%) compared with the combination of BM with any of the other proteins investigated in the current study. Longitudinal analyses showed increased GFAP and p-tau181 in Aß+ CU and increased NFL in Aß- CU, over a 12-month duration. GFAP, p-tau181, p-tau231, and NFL showed significant correlations with cognition, whereas no significant correlations were observed with hippocampal volume. DISCUSSION: These findings highlight the diagnostic and longitudinal monitoring potential of GFAP and p-tau for preclinical AD.


Assuntos
Doença de Alzheimer , Amiloidose , Idoso , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides , Biomarcadores , Humanos , Prognóstico , Proteínas tau
15.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805778

RESUMO

Plasma amyloid-beta (Aß) has long been investigated as a blood biomarker candidate for Cerebral Amyloid Angiopathy (CAA), however previous findings have been inconsistent which could be attributed to the use of less sensitive assays. This study investigates plasma Aß alterations between pre-symptomatic Dutch-type hereditary CAA (D-CAA) mutation-carriers (MC) and non-carriers (NC) using two Aß measurement platforms. Seventeen pre-symptomatic members of a D-CAA pedigree were assembled and followed up 3-4 years later (NC = 8; MC = 9). Plasma Aß1-40 and Aß1-42 were cross-sectionally and longitudinally analysed at baseline (T1) and follow-up (T2) and were found to be lower in MCs compared to NCs, cross-sectionally after adjusting for covariates, at both T1(Aß1-40: p = 0.001; Aß1-42: p = 0.0004) and T2 (Aß1-40: p = 0.001; Aß1-42: p = 0.016) employing the Single Molecule Array (Simoa) platform, however no significant differences were observed using the xMAP platform. Further, pairwise longitudinal analyses of plasma Aß1-40 revealed decreased levels in MCs using data from the Simoa platform (p = 0.041) and pairwise longitudinal analyses of plasma Aß1-42 revealed decreased levels in MCs using data from the xMAP platform (p = 0.041). Findings from the Simoa platform suggest that plasma Aß may add value to a panel of biomarkers for the diagnosis of pre-symptomatic CAA, however, further validation studies in larger sample sets are required.


Assuntos
Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Angiopatia Amiloide Cerebral Familiar/genética , Fragmentos de Peptídeos/genética , Adulto , Peptídeos beta-Amiloides/sangue , Precursor de Proteína beta-Amiloide/sangue , Doenças Assintomáticas , Biomarcadores/sangue , Angiopatia Amiloide Cerebral Familiar/sangue , Angiopatia Amiloide Cerebral Familiar/diagnóstico , Angiopatia Amiloide Cerebral Familiar/patologia , Progressão da Doença , Feminino , Expressão Gênica , Genes Dominantes , Heterozigoto , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Mutação , Testes Neuropsicológicos , Linhagem , Fragmentos de Peptídeos/sangue
16.
Transl Psychiatry ; 11(1): 27, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431793

RESUMO

Glial fibrillary acidic protein (GFAP), an astrocytic cytoskeletal protein, can be measured in blood samples, and has been associated with Alzheimer's disease (AD). However, plasma GFAP has not been investigated in cognitively normal older adults at risk of AD, based on brain amyloid-ß (Aß) load. Cross-sectional analyses were carried out for plasma GFAP and plasma Aß1-42/Aß1-40 ratio, a blood-based marker associated with brain Aß load, in participants (65-90 years) categorised into low (Aß-, n = 63) and high (Aß+, n = 33) brain Aß load groups via Aß positron emission tomography. Plasma GFAP, Aß1-42, and Aß1-40 were measured using the Single molecule array (Simoa) platform. Plasma GFAP levels were significantly higher (p < 0.00001), and plasma Aß1-42/Aß1-40 ratios were significantly lower (p < 0.005), in Aß+ participants compared to Aß- participants, adjusted for covariates age, sex, and apolipoprotein E-ε4 carriage. A receiver operating characteristic curve based on a logistic regression of the same covariates, the base model, distinguished Aß+ from Aß- (area under the curve, AUC = 0.78), but was outperformed when plasma GFAP was added to the base model (AUC = 0.91) and further improved with plasma Aß1-42/Aß1-40 ratio (AUC = 0.92). The current findings demonstrate that plasma GFAP levels are elevated in cognitively normal older adults at risk of AD. These observations suggest that astrocytic damage or activation begins from the pre-symptomatic stage of AD and is associated with brain Aß load. Observations from the present study highlight the potential of plasma GFAP to contribute to a diagnostic blood biomarker panel (along with plasma Aß1-42/Aß1-40 ratios) for cognitively normal older adults at risk of AD.


Assuntos
Doença de Alzheimer , Idoso , Peptídeos beta-Amiloides , Apolipoproteína E4 , Estudos Transversais , Proteína Glial Fibrilar Ácida , Humanos , Fragmentos de Peptídeos
17.
J Neurochem ; 159(2): 389-402, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-32679614

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that currently has no cure. Identifying biochemical changes associated with neurodegeneration prior to symptom onset, will provide insight into the biological mechanisms associated with neurodegenerative processes, that may also aid in identifying potential drug targets. The current study therefore investigated associations between plasma neurofilament light chain (NF-L), a marker of neurodegeneration, with plasma metabolites that are products of various cellular processes. Plasma NF-L, measured by ultrasensitive Single molecule array (Simoa) technology (Quanterix) and plasma metabolites, measured by mass-spectrometry (AbsoluteIDQ® p400HR kit, BIOCRATES), were assessed in the Kerr Anglican Retirement Village Initiative in Ageing Health (KARVIAH) cohort comprising 100 cognitively normal older adults. Metabolites belonging to biogenic amine (creatinine, symmetric dimethylarginine, asymmetric dimethylarginine; ADMA, kynurenine, trans-4-hydroxyproline), amino acid (citrulline, proline, arginine, asparagine, phenylalanine, threonine) and acylcarnitine classes were observed to have positive correlations with plasma NF-L, suggesting a link between neurodegeneration and biological pathways associated with neurotransmitter regulation, nitric oxide homoeostasis, inflammation and mitochondrial function. Additionally, after stratifying participants based on low/high brain amyloid-ß load (Aß ±) assessed by positron emission tomography, while creatinine, SDMA and citrulline correlated with NF-L in both Aß- and Aß+ groups, ADMA, proline, arginine, asparagine, phenylalanine and acylcarnitine species correlated with NF-L only in the Aß+ group after adjusting for confounding variables, suggesting that the association of these metabolites with neurodegeneration may be relevant to AD-related neuropathology. Metabolites identified to be associated with plasma NF-L may have the potential to serve as prognostic markers for neurodegenerative diseases, however, further studies are required to validate the current findings in an independent cohort, both cross-sectionally and longitudinally.


Assuntos
Doenças Neurodegenerativas/sangue , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/análise , Aminas Biogênicas/metabolismo , Biomarcadores/análise , Cognição , Estudos de Coortes , Encefalite/metabolismo , Feminino , Humanos , Masculino , Espectrometria de Massas/métodos , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/psicologia , Proteínas de Neurofilamentos/análise , Neurotransmissores/metabolismo , Óxido Nítrico/metabolismo , Tomografia por Emissão de Pósitrons , Prognóstico
18.
J Neurochem ; 159(2): 343-377, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-32888327

RESUMO

High-density lipoproteins (HDL) are a heterogeneous class of molecules whose main function is to remove excess cholesterol through a mechanism called reverse transport, in which cholesterol is transported from peripheral organs and from arterial foam cells to the liver, where it is subsequently eliminated with bile. While its ability to eliminate excess cholesterol has always been viewed as its main feature, its beneficial effects go beyond this single effect. Many of the proteins that are associated with HDL are responsible for anti-oxidant and anti-inflammatory properties. These proteins that are associated with HDL during its generation and remodelling, are referred to as 'protein cargo', which has been extensively analysed by mass spectrometry analysis in healthy and diseased individuals. In this review, we discuss the pathway that leads to HDL formation and its subsequent remodelling and catabolism with regards to the possible involvement of HDL 'protein cargo' in Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , HDL-Colesterol/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Animais , HDL-Colesterol/biossíntese , Humanos , Lipoproteínas HDL
19.
J Alzheimers Dis ; 79(2): 895-903, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33361604

RESUMO

BACKGROUND: Cerebral amyloid angiopathy (CAA) is one of the major causes of intracerebral hemorrhage and vascular dementia in older adults. Early diagnosis will provide clinicians with an opportunity to intervene early with suitable strategies, highlighting the importance of pre-symptomatic CAA biomarkers. OBJECTIVE: Investigation of pre-symptomatic CAA related blood metabolite alterations in Dutch-type hereditary CAA mutation carriers (D-CAA MCs). METHODS: Plasma metabolites were measured using mass-spectrometry (AbsoluteIDQ® p400 HR kit) and were compared between pre-symptomatic D-CAA MCs (n = 9) and non-carriers (D-CAA NCs, n = 8) from the same pedigree. Metabolites that survived correction for multiple comparisons were further compared between D-CAA MCs and additional control groups (cognitively unimpaired adults). RESULTS: 275 metabolites were measured in the plasma, 22 of which were observed to be significantly lower in theD-CAAMCs compared to D-CAA NCs, following adjustment for potential confounding factors age, sex, and APOE ε4 (p < 00.05). After adjusting for multiple comparisons, only spermidine remained significantly lower in theD-CAAMCscompared to theD-CAA NCs (p  < 0.00018). Plasma spermidine was also significantly lower in D-CAA MCs compared to the cognitively unimpaired young adult and older adult groups (p < 0.01). Spermidinewas also observed to correlate with CSF Aß40 (rs = 0.621, p = 0.024), CSF Aß42 (rs = 0.714, p = 0.006), and brain Aß load (rs = -0.527, p = 0.030). CONCLUSION: The current study provides pilot data on D-CAA linked metabolite signals, that also associated with Aß neuropathology and are involved in several biological pathways that have previously been linked to neurodegeneration and dementia.


Assuntos
Angiopatia Amiloide Cerebral Familiar/sangue , Adulto , Doenças Assintomáticas , Biomarcadores/sangue , Estudos de Casos e Controles , Angiopatia Amiloide Cerebral Familiar/genética , Angiopatia Amiloide Cerebral Familiar/metabolismo , Feminino , Heterozigoto , Humanos , Masculino , Espectrometria de Massas , Testes de Estado Mental e Demência , Metabolômica , Neuroimagem , Linhagem , Placa Amiloide/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Espermidina/sangue , Espermidina/metabolismo
20.
Nat Commun ; 11(1): 5698, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33173055

RESUMO

Changes to lipid metabolism are tightly associated with the onset and pathology of Alzheimer's disease (AD). Lipids are complex molecules comprising many isomeric and isobaric species, necessitating detailed analysis to enable interpretation of biological significance. Our expanded targeted lipidomics platform (569 species across 32 classes) allows for detailed lipid separation and characterisation. In this study we examined peripheral samples of two cohorts (AIBL, n = 1112 and ADNI, n = 800). We are able to identify concordant peripheral signatures associated with prevalent AD arising from lipid pathways including; ether lipids, sphingolipids (notably GM3 gangliosides) and lipid classes previously associated with cardiometabolic disease (phosphatidylethanolamine and triglycerides). We subsequently identified similar lipid signatures in both cohorts with future disease. Lastly, we developed multivariate lipid models that improved classification and prediction. Our results provide a holistic view between the lipidome and AD using a comprehensive approach, providing targets for further mechanistic investigation.


Assuntos
Doença de Alzheimer/metabolismo , Lipidômica , Lipídeos/sangue , Biomarcadores/sangue , Estudos de Coortes , Simulação por Computador , Humanos , Metabolismo dos Lipídeos , Metabolômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA