Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 130(16): 5414-5, 2008 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-18376826

RESUMO

Oxidation of graphite may be carried out by reaction with meta-chloroperoxybenzoic acid to yield graphite epoxide. Scanning tunneling microscopy (STM) showed that the functionalization occurs at the edges rather than on the basal plane of the graphite. Quantification of the epoxide content is possible through the deepoxidation reaction using MeReO3/PPh3.

3.
Nano Lett ; 7(5): 1178-85, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17397230

RESUMO

We have prepared nylon 6,10 nanocomposites using functionalized single wall carbon nanotubes and our interfacial in situ polycondensation method. The specific functional groups -(CH2)nCOCl [n = 4 and 9] on the sidewalls of SWNT were designed to covalently link nanotubes to the nylon matrix via alkyl segments. The composites with functionalized SWNT show significant improvements in tensile modulus, strength, and toughness relative to nylon and nylon modified with non-functionalized SWNT. The alkyl linkages at the SWNT/nylon 6,10 interface contribute significantly to improving the toughness of the composites.

4.
J Nanosci Nanotechnol ; 7(10): 3378-85, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18330144

RESUMO

The manipulation and processing of single-wall carbon nanotubes (SWNTs) is limited by their poor solubility in most common solvents. Covalent sidewall functionalization of SWNTs provides an excellent route to improve their solubility. Here we have studied the relationship between sidewall functionalization and phase behavior of solutions of functionalized SWNTs (f-SWNTs) in strong acids. We use centrifugation in conjunction with UV-Vis-nlR spectroscopy to quantify the solubility of f-SWNTs in strong acids. We image the dispersions of functionalized tubes by polarized light microscopy. We find that adding butyl groups increases marginally the solubility of SWNTs in 102% sulfuric acid in the isotropic phase; adding 9-nonadecyne groups roughly doubles the solubility of SWNTs. Viscosity measurements in dilute solutions are sensitive to de-bundling. We compare the viscosity-concentration dependence of dilute pristine and f-SWNTs to assess whether and how functionalization promotes de-bundling and stabilizes the tubes. The phase behavior and rheology of these f-SWNTs parallels with that of pristine SWNTs; 9-nonadecylated SWNTs have higher solubility and should be easier to process.


Assuntos
Ácidos/química , Coloides/química , Cristalização/métodos , Nanotecnologia/métodos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Elasticidade , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Reologia/métodos , Solubilidade , Solventes/química , Propriedades de Superfície , Viscosidade
5.
J Phys Chem B ; 110(49): 24812-5, 2006 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-17149898

RESUMO

Single-walled carbon nanotubes have been functionalized and the specific surface areas of the functionalized nanotubes measured. Contrary to expectations, functionalization leads to a decrease in specific surface area compared to that of the unfunctionalized nanotubes. Treatment with a concentrated 1:1 nitric/sulfuric acid mixture followed by high-temperature baking at 1000 degrees C was found to increase the specific surface area of the nanotubes. For the unfunctionalized SWNTs, this treatment increases the specific surface area (SSA) by 20%. In the case of SWNTs functionalized by n-butyl groups the increase in the SSA was nearly 2-fold with the value increasing from 410 (drying at 110 degrees C) to 770 m2/gm (acid and bake treatment followed by drying at 110 degrees C). For the ozonized SWNTs, the SSA increases more than 3-fold from 381 (drying at 110 degrees C) to 1068 m2/gm (acid and bake treatment followed by drying at 110 degrees C). SEM images indicate that the nanotubes rebundle in the solid state with an average bundle size of 10-30 nm. AFM studies show that the ozonized tubes have been cut to short bundles after ozonolysis. Hydrogen uptake studies carried out on the baked ozonized tubes led to a 3 wt % hydrogen uptake at 77 K and 30 bar.

6.
J Am Chem Soc ; 128(35): 11322-3, 2006 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-16939233

RESUMO

Epoxidation of single-walled carbon nanotubes (SWNTs) may be carried out by the reaction of SWNTs with either trifluorodimethyldioxirane or 3-chloroperoxybenzoic acid; the resulting O-SWNTs are spectroscopically similar to those formed by ozonolysis. Quantification of the epoxide substituents is possible through the catalytic de-epoxidation reaction using MeReO3/PPh3 and the 31P NMR spectroscopy. The de-epoxidation methodology may be used to determine that wet air oxidation is preferable to either acid or O2/SF6 purification. We have demonstrated that previously assumed "pure" SWNTs are actually "doped" to a level of at least 1 oxygen per 250 carbon atoms.

7.
Org Lett ; 7(19): 4067-9, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16146353

RESUMO

[reaction: see text] Carbon nanotube salts prepared by treating single-wall carbon nanotubes (SWNTs) with lithium in liquid ammonia react readily with aryl iodides to give SWNTs functionalized by aryl groups.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA