Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 12(32): 10871-10877, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34476066

RESUMO

Control of charge carriers that transport through the molecular junctions is essential for thermoelectric materials. In general, the charge carrier depends on the dominant conduction orbitals and is dominantly determined by the terminal anchor groups. The present study discloses the synthesis, physical properties in solution, and single-molecule conductance of paddle-wheel diruthenium complexes 1R having diarylformamidinato supporting ligands (DArF: p-R-C6H4-NCHN-C6H4-R-p) and two axial thioanisylethynyl conducting anchor groups, revealing unique substituent effects with respect to the conduction orbitals. The complexes 1R with a few different aryl substituents (R = OMe, H, Cl, and CF3) were fully characterized by spectroscopic and crystallographic analyses. The single-molecule conductance determined by the scanning tunneling microscope break junction (STM-BJ) technique was in the 10-5 to 10-4 G 0 region, and the order of conductance was 1OMe > 1CF3 ≫ 1H ∼ 1Cl, which was not consistent with the Hammett substituent constants σ of R. Cyclic voltammetry revealed the narrow HOMO-LUMO gaps of 1R originating from the diruthenium motif, as further supported by the DFT study. The DFT-NEGF analysis of this unique result revealed that the dominant conductance routes changed from HOMO conductance (for 1OMe) to LUMO conductance (for 1CF3). The drastic change in the conductance properties originates from the intrinsic narrow HOMO-LUMO gaps.

2.
Dalton Trans ; 46(17): 5670-5679, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28181614

RESUMO

4-Nitrobenzoic acid, 3-nitrobenzoic acid and 4'-nitro[1,1'-biphenyl]-4-carboxylic acid react with the multiply bonded paramagnetic dirhenium(iii,ii) complex Re2(µ-O2CCH3)Cl4(µ-Ph2PCH2PPh2)2 (1) in refluxing ethanol to afford the paramagnetic substitution products of the type Re2(µ-L)Cl4(µ-Ph2PCH2PPh2)2, where L represents the nitrobenzoate ligands [L = 4-nitrobenzoate, 2; 3-nitrobenzoate, 3; 4'-nitro[1,1'-biphenyl]-4-carboxylate, 4]. These are the first examples of paramagnetic dirhenium complexes containing nitrobenzoate ligands. The spectral (UV-vis, IR, and EPR) and electrochemical properties of the complexes are described. The identity of 4 has been established by single-crystal X-ray structure determination (Re-Re distance of 2.2967(4) Å). The electronic structures of the complexes were scrutinized by density functional theory (DFT) calculations. X-band EPR spectral measurements along with the DFT analysis show that the unpaired electron resides in the metal-metal δ* antibonding orbital. The complexes were also screened in vitro for their antiproliferative properties against the human breast cancer cell line MCF-7 by the MTT assay. Flow cytometry analysis showed that the complexes arrested the sub-G0/G1 phase.


Assuntos
Complexos de Coordenação/química , Magnetismo , Nitrobenzoatos/química , Rênio/química , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/toxicidade , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Ligantes , Células MCF-7 , Microscopia Confocal , Conformação Molecular , Teoria Quântica , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta
3.
Dalton Trans ; 43(46): 17489-99, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25341014

RESUMO

Synthesis and characterization of several new pseudotetrahedral arylthiolate complexes [(Tp(Ph,Me))Ni-SAr] (Tp(Ph,Me) = hydrotris{3-phenyl-5-methyl-1-pyrazolyl}borate; Ar = Ph, 2,4,6-(i)Pr3C6H2, C6H4-4-Cl, C6H4-4-Me, C6H4-4-OMe) are reported, including X-ray crystal structures of the first two complexes. With prior results, two series of complexes are spanned, [(Tp(Ph,Me))Ni-S-2,4,6-RC6H2] (R'' = H, Me, (i)Pr) plus the xylyl analogue [(Tp(Ph,Me))Ni-S-2,6-Me2C6H3], as well as [(Tp(Ph,Me))Ni-S-C6H4-4-Y] (Y = Cl, H, Me, OMe), intended to elucidate steric and/or electronic effects on arylthiolate coordination. In contrast to [(Tp(Me,Me))Ni-SAr] analogues that adopt a sawhorse conformation, the ortho-disubstituted complexes show enhanced trigonal and Ni-S-Ar bending, reflecting the size of the 3-pyrazole substituents. Moreover, weakened scorpionate ligation is implied by spectroscopic data. Little spectroscopic effect is observed in the series of para-substituted complexes, suggesting the observed effects are primarily steric in origin. The relatively electron-rich and encumbered complex [(Tp(Ph,Me))Ni-S-2,4,6-(i)Pr3C6H2] behaves uniquely when dissolved in CH3CN, forming a square planar solvent adduct with a bidentate scorpionate ligand, [(κ(2)-Tp(Ph,Me))Ni(NCMe)(S-2,4,6-(i)Pr3C6H2)]. This adduct was isolated and characterized by X-ray crystallography. Single-point DFT and TD-DFT calculations on a simplified [(κ(2)-Tp)Ni(NCMe)(SPh)] model were used to clarify the electronic spectrum of the adduct, and to elucidate differences between Ni-SAr bonding and spectroscopy between pseudotetrahedral and square planar geometries.


Assuntos
Argônio/química , Boratos/química , Ácidos Borônicos/química , Complexos de Coordenação/química , Níquel/química , Pirazóis/química , Teoria Quântica , Compostos de Sulfidrila/química , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Modelos Moleculares
4.
Dalton Trans ; 42(36): 13014-25, 2013 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23872704

RESUMO

Herein we describe the chemical reactivity of the mononuclear [Mn(II)(N4py)(OTf)](OTf) (1) complex with hydrogen peroxide and superoxide. Treatment of 1 with one equivalent superoxide at -40 °C in MeCN formed the peroxomanganese(III) adduct, [Mn(III)(O2)(N4py)](+) (2) in ~30% yield. Complex 2 decayed over time and the formation of the bis(µ-oxo)dimanganese(III,IV) complex, [Mn(III)Mn(IV)(µ-O)2(N4py)2](3+) (3) was observed. When 2 was formed in higher yields (~60%) using excess superoxide, the [Mn(III)(O2)(N4py)](+) species thermally decayed to Mn(II) species and 3 was formed in no greater than 10% yield. Treatment of [Mn(III)(O2)(N4py)](+) with 1 resulted in the formation of 3 in ~90% yield, relative to the concentration of [Mn(III)(O2)(N4py)](+). This reaction mimics the observed chemistry of Mn-ribonucleotide reductase, as it features the conversion of two Mn(II) species to an oxo-bridged Mn(III)Mn(IV) compound using O2(-) as oxidant. Complex 3 was independently prepared through treatment of 1 with H2O2 and base at -40 °C. The geometric and electronic structures of 3 were probed using electronic absorption, electron paramagnetic resonance (EPR), magnetic circular dichroism (MCD), variable-temperature, variable-field MCD (VTVH-MCD), and X-ray absorption (XAS) spectroscopies. Complex 3 was structurally characterized by X-ray diffraction (XRD), which revealed the N4py ligand bound in an unusual tetradentate fashion.


Assuntos
Materiais Biomiméticos/química , Complexos de Coordenação/química , Manganês/química , Piridinas/química , Superóxidos/química , Materiais Biomiméticos/síntese química , Dicroísmo Circular , Complexos de Coordenação/síntese química , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Oxirredução , Piridinas/síntese química , Espectroscopia por Absorção de Raios X , Difração de Raios X
5.
Chem Commun (Camb) ; 49(50): 5696-8, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23689474

RESUMO

A novel and efficient method for preparing [Mn(III)(O2)(L)](+) complexes using electrochemically generated superoxide is reported, with the reaction probed by low temperature electronic absorption and electron paramagnetic resonance spectroscopic techniques.


Assuntos
Complexos de Coordenação/química , Imidazóis/química , Manganês/química , Piridinas/química , Eletroquímica , Ligantes , Superóxidos/química
6.
Inorg Chem ; 50(20): 10190-203, 2011 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-21875042

RESUMO

Three peroxomanganese(III) complexes [Mn(III)(O(2))(mL(5)(2))](+), [Mn(III)(O(2))(imL(5)(2))](+), and [Mn(III)(O(2))(N4py)](+) supported by pentadentate ligands (mL(5)(2) = N-methyl-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine, imL(5)(2) = N-methyl-N,N',N'-tris((1-methyl-4-imidazolyl)methyl)ethane-1,2-diamine, and N4py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) were generated by treating Mn(II) precursors with H(2)O(2) or KO(2). Electronic absorption, magnetic circular dichroism (MCD), and variable-temperature, variable-field MCD data demonstrate that these complexes have very similar electronic transition energies and ground-state zero-field splitting parameters, indicative of nearly identical coordination geometries. Because of uncertainty in peroxo (side-on η(2) versus end-on η(1)) and ligand (pentadentate versus tetradentate) binding modes, density functional theory (DFT) computations were used to distinguish between three possible structures: pentadentate ligand binding with (i) a side-on peroxo and (ii) an end-on peroxo, and (iii) tetradentate ligand binding with a side-on peroxo. Regardless of the supporting ligand, isomers with a side-on peroxo and the supporting ligand bound in a tetradentate fashion were identified as most stable by >20 kcal/mol. Spectroscopic parameters computed by time-dependent (TD) DFT and multireference SORCI methods provided validation of these isomers on the basis of experimental data. Hexacoordination is thus strongly preferred for peroxomanganese(III) adducts, and dissociation of a pyridine (mL(5)(2) and N4py) or imidazole (imL(5)(2)) arm is thermodynamically favored. In contrast, DFT computations for models of [Fe(III)(O(2))(mL(5)(2))](+) demonstrate that pyridine dissociation is not favorable; instead a seven-coordinate ferric center is preferred. These different results are attributed to the electronic configurations of the metal centers (high spin d(5) and d(4) for Fe(III) and Mn(III), respectively), which results in population of a metal-peroxo σ-antibonding molecular orbital and, consequently, longer M-O(peroxo) bonds for peroxoiron(III) species.


Assuntos
Aminas/química , Elétrons , Imidazóis/química , Manganês/química , Compostos Organometálicos/química , Piridinas/química , Ligantes , Modelos Moleculares , Conformação Molecular
7.
Dalton Trans ; 40(8): 1707-15, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21264424

RESUMO

Peroxomanganese(iii) adducts have been postulated as important intermediates in manganese-containing enzymes and small molecule oxidation catalysts. Synthetic peroxomanganese(iii) complexes are known to be nucleophilic and facilitate aldehyde deformylation, offering a convenient way to compare relative reactivities of complexes supported by different ligands. In this work, tetradentate dipyridyldiazacycloalkane ligands with systematically perturbed steric and electronic properties were used to generate a series of manganese(ii) and peroxomanganese(iii) complexes. X-Ray crystal structures of five manganese(ii) complexes all show the ligands bound to give trans complexes. Treatment of these Mn(II) precursors with H(2)O(2) and Et(3)N in MeCN at -40 °C results in the formation of peroxomanganese(iii) complexes that differ only in the identity of the pyridine ring substituent and/or the number of carbons in the diazacycloalkane backbone. To determine the effects of small ligand perturbations on the reactivity of the peroxo group, the more thermally stable peroxomanganese(iii) complexes were reacted with cyclohexanecarboxaldehyde. For these complexes, the rate of deformylation does not correlate with the expected nucleophilicity of the peroxomanganese(iii) unit, as the inclusion of methyl substituents on the pyridines affords slower deformylation rates. It is proposed that adding methyl-substituents to the pyridines, or increasing the number of carbons on the diazacycloalkane, sterically hinders nucleophilic attack of the peroxo ligand on the carbonyl carbon of the aldehyde.


Assuntos
Manganês/química , Piridinas/química , Cristalografia por Raios X , Peróxido de Hidrogênio/química , Ligantes , Modelos Moleculares , Compostos Organometálicos/química , Piridinas/síntese química
8.
Inorg Chem ; 49(16): 7530-5, 2010 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-20690762

RESUMO

The electronic structures of the bis(hydroxo)manganese(IV) and oxohydroxomanganese(IV) complexes [Mn(IV)(OH)(2)(Me(2)EBC)](2+) and [Mn(IV)(O)(OH)(Me(2)EBC)](+) were probed using electronic absorption, magnetic circular dichroism (MCD), and variable-temperature, variable-field MCD spectroscopies. The d-d transitions of [Mn(IV)(OH)(2)(Me(2)EBC)](2+) were assigned using a group theory analysis coupled with the results of time-dependent density functional theory computations. These assignments permit the development of an experimentally validated description for the pi and sigma interactions in this complex. A similar analysis performed for [Mn(IV)(O)(OH)(Me(2)EBC)](+) reveals that there is a significant increase in the ligand character in the Mn pi* orbitals for the Mn(IV)=O complex relative to the bis(hydroxo)manganese(IV) complex, whereas the compositions of the Mn sigma* orbitals are less affected. Because of the steric features of the Me(2)EBC ligand, we propose that H-atom transfer by these reagents proceeds via the sigma* orbitals, which, because of their similar compositions among these two compounds, leads to modest rate enhancements for the Mn(IV)=O versus Mn(IV)OH species.


Assuntos
Manganês/química , Compostos Organometálicos/química , Teoria Quântica , Análise Espectral , Absorção , Dicroísmo Circular , Elétrons , Modelos Moleculares , Conformação Molecular
9.
J Am Chem Soc ; 132(8): 2821-31, 2010 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-20136141

RESUMO

A set of four [Mn(II)(L(7)py(2)(R))](2+) complexes, supported by the tetradentate 1,4-bis(2-pyridylmethyl)-1,4-diazepane ligand and derivatives with pyridine substituents in the 5 (R = Br) and 6 positions (R = Me and MeO), are reported. X-ray crystal structures of these complexes all show the L(7)py(2)(R) ligands bound to give a trans complex. Treatment of these Mn(II) precursors with either H(2)O(2)/Et(3)N or KO(2) in MeCN at -40 degrees C results in the formation of peroxomanganese complexes [Mn(III)(O(2))(L(7)py(2)(R))](+) differing only in the identity of the pyridine ring substituent. The electronic structures of two of these complexes, [Mn(III)(O(2))(L(7)py(2)(H))](+) and [Mn(III)(O(2))(L(7)py(2)(Me))](+), were examined in detail using electronic absorption, low-temperature magnetic circular dichroism (MCD) and variable-temperature variable-field (VTVH) MCD spectroscopies to determine ground-state zero-field splitting (ZFS) parameters and electronic transition energies, intensities, and polarizations. DFT and TD-DFT computations were used to validate the structures of [Mn(III)(O(2))(L(7)py(2)(H))](+) and [Mn(III)(O(2))(L(7)py(2)(Me))](+), further corroborating their assignment as peroxomanganese(III) species. While these complexes exhibit similar ZFS parameters, their low-temperature MCD spectra reveal significant shifts in electronic transition energies that are correlated to differences in Mn-O(2) interactions among these complexes. Taken together, these results indicate that, while the [Mn(III)(O(2))(L(7)py(2)(H))](+) complex exhibits symmetric Mn-O(peroxo) bond lengths, consistent with a side-on bound peroxo ligand, the peroxo ligand of the [Mn(III)(O(2))(L(7)py(2)(Me))](+) complex is bound in a more end-on fashion, with asymmetric Mn-O(peroxo) distances. This difference in binding mode is rationalized in terms of the greater electron-donating abilities of the methyl-appended pyridines and suggests a simple way to modulate Mn(III)-O(2) bonding through ligand perturbations.


Assuntos
Compostos de Manganês/química , Piridinas/química , Azepinas/química , Simulação por Computador , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Modelos Moleculares , Teoria Quântica
10.
Inorg Chem ; 49(2): 457-67, 2010 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-20000833

RESUMO

Several derivatives of the pseudotetrahedral phenylthiolate complex Tp(Me,Me)Ni-SPh (1), Tp(Me,Me-) = hydrotris(3,5-dimethyl-1-pyrazolyl)borate, were prepared incorporating substituted arylthiolates, including a series of ortho-substituted ligands Tp(Me,Me)Ni-SR (R = 2,6-Me(2)C(6)H(3), 2; 2,4,6-Me(3)C(6)H(2), 3; 2,4,6- (i)Pr(3)C(6)H(2), 4; and 2,6-Ph(2)C(6)H(3), 5) and a series of para-substituted complexes (R = C(6)H(4)-4-OMe, 6; C(6)H(4)-4-Me, 7; and C(6)H(4)-4-Cl, 8). The products were characterized by (1)H NMR and UV-vis spectroscopy. Spectra of 6-8 were consistent with retention of a common structure across the para-substituted series with modest perturbation of the spectral features of 1 assisting their assignment. In contrast, spectra of 2-5 were indicative of a significant change in configuration across the ortho-disubstituted series. The structure of complex 5 was determined by X-ray crystallography and a distinctive arylthiolate ligation mode was found, in which the N(3)S ligand field was significantly distorted toward a sawhorse, compared to a more common trigonal pyramidal shape (e.g., 1). Moreover, the arylthiolate substituent rotated from a vertical orientation co-directional with the pyrazole rings and disposed between two of them in 1, to a horizontal orientation perpendicular to and over a single pyrazole ring in 5. This reorientation is necessary to accommodate the large ortho substituents of the latter complex. The divergent Ni-S coordination modes result in distinct (1)H NMR and electronic spectra that were rationalized by density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. These results demonstrate rich coordination chemistry for arylthiolates that can be elicited by steric manipulation at the periphery of pseudotetrahedral ligand fields.


Assuntos
Hidrocarbonetos Aromáticos/química , Níquel/química , Compostos de Sulfidrila/química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Teoria Quântica , Espectrofotometria , Estereoisomerismo
11.
Inorg Chem ; 47(18): 7966-8, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18710223

RESUMO

Hydrotris(3-phenyl-5-methylpyrazoyl)boratonickel(II) complexes with organoxanthate or dithiocarbamate coligands equilibrate between kappa(2)- and kappa(3)-chelation modes of the scorpionate ligand in solution, connecting N2S2 square-planar and N3S2 pyramidal ligand fields and a spin crossover. The complexes also exhibit quasi-reversible oxidations at low anodic potentials, thus modeling the structure, dynamics, and redox reactivity of the reduced NiSOD active site.


Assuntos
Modelos Moleculares , Níquel/metabolismo , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Boratos/química , Domínio Catalítico , Cristalografia por Raios X , Ligantes , Oxirredução , Titulometria
12.
Inorg Chem ; 47(8): 3384-92, 2008 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-18345601

RESUMO

Five new pseudotetrahedral nickel(II) arylthiolate complexes Tp (R,Me)Ni-SR' [(Tp (R,Me)) (-) = 2,2,2-kappa (3)-hydridotris(3-R,5-methylpyrazolyl)borate; R = Me, R' = C 6H 5 (Ph), 2,4,6-C 6H 2(CH 3) 3 (Mes); R = Ph, R' = C 6H 5 (Ph), 2,4,6-C 6H 2(CH 3) 3 (Mes), and 2,6-C 6H 3(CH 3) 2 (Xyl)] were prepared by metathesis reactions of known chloride complexes with sodium arylthiolate salts in THF. The new products were fully characterized. The effect of increasing bulk of substituents at the proximal 3-pyrazolyl and ortho-thiolate positions represented in this series was evident in spectroscopic studies (UV-vis-NIR, (1)H NMR) of the product complexes. Increased steric contact induced red-shifting of nickel-thiolate ligand to metal charge transfer (LMCT) bands and enhanced contact shifts of arylthiolate protons with the paramagnetic ( S = 1) nickel(II) ion. These spectroscopic effects arise from structural distortion of the nickel(II)-thiolate bond revealed by X-ray crystal structure determinations of the structural extremes of the series, Tp (Me,Me)Ni-SPh and Tp (Ph,Me)Ni-SXyl. The distortion consists of a significantly increased tilting of the Ni-S bond from an ideal trigonal axis and increased linearity of the Ni-S-R angle that alters covalency of the Ni-S coordinate bond. Reactivity of the nickel-thiolate linkage toward electrophilic alkylation with MeI is also significantly affected, showing enhanced rates according to two distinct competing mechanisms, direct bimolecular alkylation of intact complex and rate-limiting unimolecular dissociation of free thiolate. Possible biochemical relevance of these observations to tetrahedral nickel(II) centers in metalloenzymes is considered.


Assuntos
Níquel/química , Compostos de Sulfidrila/química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Espectrofotometria
13.
J Am Chem Soc ; 129(28): 8912-20, 2007 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-17595088

RESUMO

Deposition of CH3ReO3 onto the surface of dehydrated, amorphous silica-alumina generates a highly active, supported catalyst for the metathesis of olefins. However, silica-alumina with a high (10 wt %) Re loading is no more active than silica-alumina with low (1 wt %) loading, while CH3ReO3 on silica is completely inactive. Catalysts prepared by grafting CH3ReO3 on silica-alumina contain two types of spectroscopically distinct sites. The more strongly bound sites are responsible for olefin metathesis activity and are formed preferentially at low Re loadings (< or =1 wt %). They are created by two Lewis acid/base interactions: (1) the coordination of an oxo ligand to an Al center of the support and (2) interaction of one of the adjacent bridging oxygens (AlOSi) with the Re center. At higher Re loadings (1-10 wt %), CH3ReO3 also interacts with surface silanols by H-bonding. This gives rise to highly mobile sites, most of which can be observed by 13C solid-state NMR even without magic-angle spinning. Their formation can be prevented by capping the surface hydroxyl groups with hexamethyldisilazane prior to grafting CH3ReO3, resulting in a metathesis catalyst that is more selective, more robust, and more efficient in terms of Re use.

14.
Inorg Chem ; 42(19): 5924-31, 2003 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-12971761

RESUMO

Pyridine-2-carboxylic acid, pyridine-2,3-dicarboxylic acid, and pyridine-2,4-dicarboxylic acid or their [(Ph(3)P)(2)N](+) salts react with the triply bonded dirhenium(II) complex Re(2)Cl(4)(mu-dppm)(2) (dppm = Ph(2)PCH(2)PPh(2)) in refluxing ethanol to afford unsymmetrical substitution products of the type Re(2)(eta(2)-N,O)Cl(3)(mu-dppm)(2), where N,O represents a chelating pyridine-2-carboxylate ligand (N,O = O(2)C-2-C(5)H(4)N (1), O(2)C-2-C(5)H(3)N(-3-CO(2)Et) (3), or O(2)C-2-C(5)H(3)N(-4-CO(2)H) (4)). The carboxylate groups in the 3- and 4- positions are not bound to the metal centers; in the case of 3 this group undergoes esterification in the refluxing ethanol solvent. Structure determinations have shown that 1, 3, and 4 possess similar structures in which there is an axial Re-O (carboxylate) bond (collinear with the Re(triple bond)Re bond) and the mu-dppm ligands are bound in a trans,cis fashion to the two Re atoms which have the ligand atom arrangement [P(2)NOClReReCl(2)P(2)]. The tridentate dianionic pyridine-2,6-dicarboxylate ligand (dipic) reacts with Re(2)Cl(4)(mu-dppm)(2) in ethanol at room temperature to give a compound Re(2)(dipic)Cl(2)(mu-dppm)(2) (6) in which the dipic ligand is bound in a symmetrical eta(3)-(O,N,O) fashion to one Re atom, with the N atom in an axial position (collinear with the Re(triple bond)Re bond) and with preservation of the same trans,trans coordination of the mu-dppm ligands that is present in Re(2)Cl(4)(mu-dppm)(2). Under reflux conditions, this kinetic product isomerizes to the thermodynamically favored isomer 5 with an unsymmetrical structure in which the dipic ligand chelates to one Re atom (as in 1, 3, and 4) and uses its other carboxylate group to bridge to the second Re atom. The isomerization of 6 to 5, which also results in a change in the coordination of the pair of mu-dppm ligand to trans,cis, is believed to occur by a partial "merry-go-round" process, a mechanism that probably explains the structures of the thermodynamic products 1, 3, and 4. The reaction of Re(2)Cl(4)(mu-dppm)(2) with pyridine-3-carboxylate gives the trans isomer of Re(2)(mu:eta(2)-O(2)C-3-C(5)H(4)N)(2)Cl(2)(mu-dppm)(2) (2) in which a pair of carboxylate bridges are present and the pyridine N atom is not coordinated. Single-crystal X-ray structural details are reported for 1-6.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA