Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(12): 6890-6900, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32152092

RESUMO

Inefficient physiological transitions are known to cause metabolic disorders. Therefore, investigating mechanisms that constitute molecular switches in a central metabolic organ like the liver becomes crucial. Specifically, upstream mechanisms that control temporal engagement of transcription factors, which are essential to mediate physiological fed-fast-refed transitions are less understood. SIRT1, a NAD+-dependent deacetylase, is pivotal in regulating hepatic gene expression and has emerged as a key therapeutic target. Despite this, if/how nutrient inputs regulate SIRT1 interactions, stability, and therefore downstream functions are still unknown. Here, we establish nutrient-dependent O-GlcNAcylation of SIRT1, within its N-terminal domain, as a crucial determinant of hepatic functions. Our findings demonstrate that during a fasted-to-refed transition, glycosylation of SIRT1 modulates its interactions with various transcription factors and a nodal cytosolic kinase involved in insulin signaling. Moreover, sustained glycosylation in the fed state causes nuclear exclusion and cytosolic ubiquitin-mediated degradation of SIRT1. This mechanism exerts spatiotemporal control over SIRT1 functions by constituting a previously unknown molecular relay. Of note, loss of SIRT1 glycosylation discomposed these interactions resulting in aberrant gene expression, mitochondrial dysfunctions, and enhanced hepatic gluconeogenesis. Expression of nonglycosylatable SIRT1 in the liver abrogated metabolic flexibility, resulting in systemic insulin resistance, hyperglycemia, and hepatic inflammation, highlighting the physiological costs associated with its overactivation. Conversely, our study also reveals that hyperglycosylation of SIRT1 is associated with aging and high-fat-induced obesity. Thus, we establish that nutrient-dependent glycosylation of SIRT1 is essential to gate its functions and maintain physiological fitness.


Assuntos
Gluconeogênese , Homeostase , Hiperglicemia/prevenção & controle , Fígado/metabolismo , Processamento de Proteína Pós-Traducional , Sirtuína 1/metabolismo , Acetilglucosamina/metabolismo , Envelhecimento/fisiologia , Animais , Jejum , Glicosilação , Células HEK293 , Humanos , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Resistência à Insulina , Fígado/imunologia , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/patologia , Obesidade/prevenção & controle , Fosforilação , Sirtuína 1/química , Análise Espaço-Temporal
2.
Cell Rep ; 26(8): 2212-2226.e7, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30784600

RESUMO

Inability to mediate fed-fast transitions in the liver is known to cause metabolic dysfunctions and diseases. Intuitively, a failure to inhibit futile translation of state-specific transcripts during fed-fast cycles would abrogate dynamic physiological transitions. Here, we have discovered hepatic fed microRNAs that target fasting-induced genes and are essential for a refed transition. Our findings highlight the role of these fed microRNAs in orchestrating system-level control over liver physiology and whole-body energetics. By targeting SIRT1, PGC1α, and their downstream genes, fed microRNAs regulate metabolic and mitochondrial pathways. MicroRNA expression, processing, and RISC loading oscillate during these cycles and possibly constitute an anticipatory mechanism. Fed-microRNA oscillations are deregulated during aging. Scavenging of hepatic fed microRNAs causes uncontrolled gluconeogenesis and failure in the catabolic-to-anabolic switching upon feeding, which are hallmarks of metabolic diseases. Besides identifying mechanisms that enable efficient physiological toggling, our study highlights fed microRNAs as candidate therapeutic targets.


Assuntos
Jejum/metabolismo , Homeostase , Fígado/metabolismo , MicroRNAs/genética , Animais , Células Cultivadas , Metabolismo Energético , Gluconeogênese , Células HEK293 , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Mitocôndrias Hepáticas/metabolismo , Periodicidade , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Sirtuína 1/metabolismo
3.
Cell Rep ; 18(13): 3069-3077, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28355560

RESUMO

The conserved NAD+-dependent deacylase SIRT1 plays pivotal, sometimes contrasting, roles in diverse physiological and pathophysiological conditions. In this study, we uncover a tissue-restricted isoform of SIRT1 (SIRT1-ΔE2) that lacks exon 2 (E2). Candidate-based screening of SIRT1 substrates demonstrated that the domain encoded by this exon plays a key role in specifying SIRT1 protein-protein interactions. The E2 domain of SIRT1 was both necessary and sufficient for PGC1α binding, enhanced interaction with p53, and thus downstream functions. Since SIRT1-FL and SIRT1-ΔE2 were found to have similar intrinsic catalytic activities, we propose that the E2 domain tethers specific substrate proteins. Given the absence of SIRT1-ΔE2 in liver, our findings provide insight into the role of the E2 domain in specifying "metabolic functions" of SIRT1-FL. Identification of SIRT1-ΔE2 and the conserved specificity domain will enhance our understanding of SIRT1 and guide the development of therapeutic interventions.


Assuntos
Especificidade de Órgãos , Sirtuína 1/química , Sirtuína 1/metabolismo , Animais , Biocatálise , Bovinos , Sequência Conservada , Evolução Molecular , Éxons/genética , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Camundongos , Proteínas Mutantes/metabolismo , Oxirredução , Ligação Proteica , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerização Proteica , Sirtuína 1/genética , Relação Estrutura-Atividade , Frações Subcelulares/metabolismo , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo
4.
Biofactors ; 43(2): 195-209, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28186649

RESUMO

A direct link between development of insulin resistance and the presence of chronic inflammation, in case of obesity exists, with cytokines playing an important role in glucose metabolism. Members of TGF-ß superfamily, including bone morphogenetic proteins (BMPs), have been shown to be involved in islet morphogenesis, establishment of ß-cell mass and adipose cell fate determination. Here, we demonstrate a novel and direct role of BMP-4 and -7 in the regulation of glucose homeostasis and insulin resistance. An age-dependent increase in serum BMP-4 and decrease in serum BMP-7 levels was observed in animal models of type II diabetes. In this study, BMP-7 and -4 have been demonstrated to have antagonistic effects on insulin signaling and thereby on glucose homeostasis. BMP-7 augmented glucose uptake in the insulin sensitive tissues such as the adipose and muscle by increasing Glut4 translocation to the plasma membrane through phosphorylation and activation of PDK1 and Akt, and phosphorylation and translocation of FoxO1 to the cytoplasm in liver/HepG2 cells. Restoration of BMP-7 levels in serum of diabetic animals resulted in decreased blood glucose levels in contrast to age matched untreated control groups, opening up a new therapeutic avenue for diabetes. On the contrary, BMP-4 inhibited insulin signaling through activation of PKC-θ isoform, and resulted in insulin resistance through the attenuation of insulin signaling. BMP-7 therefore is an attractive candidate for tackling a multifaceted disease such as diabetes, since it not only reduces body fat, but also strengthens insulin signaling, causing improved glucose uptake and ameliorating peripheral insulin resistance. © 2017 BioFactors, 43(2):195-209, 2017.


Assuntos
Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 7/genética , Diabetes Mellitus Tipo 2/genética , Glucose/metabolismo , Resistência à Insulina/genética , Insulina/sangue , Animais , Proteína Morfogenética Óssea 4/sangue , Proteína Morfogenética Óssea 7/sangue , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Transportador de Glucose Tipo 4/biossíntese , Humanos , Insulina/genética , Camundongos , Camundongos Endogâmicos NOD , Proteína Oncogênica v-akt/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Serina-Treonina Quinases/biossíntese , Piruvato Desidrogenase Quinase de Transferência de Acetil , Transdução de Sinais
5.
Proc Natl Acad Sci U S A ; 107(30): 13246-51, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20628017

RESUMO

Diabetes is a chronic disease requiring continuous medical supervision and patient education to prevent acute secondary complications. In this study, we have harnessed the inherent property of insulin to aggregate into an oligomeric intermediate on the pathway to amyloid formation, to generate a form that exhibits controlled and sustained release for extended periods. Administration of a single dose of the insulin oligomer, defined here as the supramolecular insulin assembly II (SIA-II), to experimental animals rendered diabetic by streptozotocin or alloxan, released the hormone capable of maintaining physiologic glucose levels for >120 days for bovine and >140 days for recombinant human insulin without fasting hypoglycemia. Moreover, the novel SIA-II described here not only improved the glycemic control, but also reduced the extent of secondary diabetic complications.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Insulina/uso terapêutico , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Aloxano , Amiloide/química , Amiloide/metabolismo , Amiloide/ultraestrutura , Animais , Glicemia/análise , Bovinos , Células Cultivadas , Vermelho Congo/química , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Tipo 1/sangue , Teste de Tolerância a Glucose , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico , Insulina/química , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Multimerização Proteica , Coelhos , Ratos , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier , Estreptozocina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA