Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2400378, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621382

RESUMO

In the pursuit to combat stubborn bacterial infections, particularly those stemming from gram-positive bacteria, this study is an attempt to craft a precision-driven platform characterized by unparalleled selectivity, specificity, and synergistic antimicrobial mechanisms. Leveraging remarkable potential of metalloantibiotics in antimicrobial applications, herein, this work rationally designs, synthesizes, and characterizes a new library of Pyridine-2,6-dicarboxamide ligands and their corresponding transition metal Cu(II)/Zn(II) complexes. The lead compound L11 demonstrates robust antibacterial properties against Staphylococcus aureus (Minimum Inhibitory Concentration (MIC) = 2-16 µg mL-1), methicillin and vancomycin-resistant S. aureus (MIC = 2-4 µg mL-1) and exhibit superior antibacterial activity when compared to FDA-approved vancomycin, the drug of last resort. Additionally, the compound exhibits notable antimicrobial efficacy against resistant enterococcus strains (MIC = 2-8 µg mL-1). To unravel mechanistic profile, advanced imaging techniques including SEM and AFM are harnessed, collectively suggesting a mechanistic pathway involving cell wall disruption. Live/dead fluorescence studies further confirm efficacy of L11 and its complexes against S. aureus membranes. This translational exploration extends to a rat model, indicating promising in vivo therapeutic potential. Thus, this comprehensive research initiative has capabilities to transcends the confines of this laboratory, heralding a pivotal step toward combatting antibiotic-resistant pathogens and advancing the frontiers of metalloantibiotics-based therapy with a profound clinical implication.

2.
Chem Commun (Camb) ; 59(96): 14305-14308, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37970743

RESUMO

Chemodynamic therapy is an evolving therapeutic strategy but there are certain limitations associated with its treatment. Herein, we present de novo synthesis and mechanistic evaluation of HL1-HL8 ligands and their corresponding CuII(L1)2-CuII(L8)2. The most active Cu(L2)2 (IC50 = 5.3 µM, MCF-7) complex exclusively depletes glutathione while simultaneously promoting ROS production. Cu(L2)2 also affects other macromolecules like the mitochondrial membrane and DNA while activating the unfolded protein response cascade.


Assuntos
Glutationa , Peróxido de Hidrogênio , Glutationa/metabolismo , Linhagem Celular Tumoral
3.
Basic Res Cardiol ; 118(1): 46, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923788

RESUMO

Regulation of RNA stability and translation by RNA-binding proteins (RBPs) is a crucial process altering gene expression. Musashi family of RBPs comprising Msi1 and Msi2 is known to control RNA stability and translation. However, despite the presence of MSI2 in the heart, its function remains largely unknown. Here, we aim to explore the cardiac functions of MSI2. We confirmed the presence of MSI2 in the adult mouse, rat heart, and neonatal rat cardiomyocytes. Furthermore, Msi2 was significantly enriched in the heart cardiomyocyte fraction. Next, using RNA-seq data and isoform-specific PCR primers, we identified Msi2 isoforms 1, 4, and 5, and two novel putative isoforms labeled as Msi2 6 and 7 to be expressed in the heart. Overexpression of Msi2 isoforms led to cardiac hypertrophy in cultured cardiomyocytes. Additionally, Msi2 exhibited a significant increase in a pressure-overload model of cardiac hypertrophy. We selected isoforms 4 and 7 to validate the hypertrophic effects due to their unique alternative splicing patterns. AAV9-mediated overexpression of Msi2 isoforms 4 and 7 in murine hearts led to cardiac hypertrophy, dilation, heart failure, and eventually early death, confirming a pathological function for Msi2. Using global proteomics, gene ontology, transmission electron microscopy, seahorse, and transmembrane potential measurement assays, increased MSI2 was found to cause mitochondrial dysfunction in the heart. Mechanistically, we identified Cluh and Smyd1 as direct downstream targets of Msi2. Overexpression of Cluh and Smyd1 inhibited Msi2-induced cardiac malfunction and mitochondrial dysfunction. Collectively, we show that Msi2 induces hypertrophy, mitochondrial dysfunction, and heart failure.


Assuntos
Insuficiência Cardíaca , Animais , Camundongos , Ratos , Cardiomegalia , Proteínas de Ligação a DNA/metabolismo , Insuficiência Cardíaca/metabolismo , Mitocôndrias/metabolismo , Proteínas Musculares/genética , Miócitos Cardíacos/metabolismo , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacologia , RNA Mensageiro/metabolismo , RNA Mensageiro/farmacologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/farmacologia
4.
J Water Health ; 21(8): 981-994, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37632375

RESUMO

The study estimated the risk due to Cryptosporidium, Giardia, and Ascaris, associated with non-potable water reuse in the city of Jaipur, India. The study first determined the exposure dose of Cryptosporidium, Giardia, and Ascaris based on various wastewater treatment technologies for various scenarios of reuse for six wastewater treatment plants (WWTPs) in the city. The exposure scenarios considered were (1) garden irrigation; (2) working and lounging in the garden; and (3) consumption of crops irrigated with recycled water. The estimated annual risk of infection varied between 8.57 × 10-7 and 1.0 for protozoa and helminths, respectively. The order of treatment processes, in decreasing order of annual risk of infection, was found to be: moving-bed bioreactor (MBBR) technology > activated sludge process (ASP) technology > sequencing batch reactor (SBR) technology. The estimated annual risk was found to be in this order: Ascaris > Giardia > Cryptosporidium. The study also estimated the maximum allowable concentration (Cmax) of pathogen in the effluent for a benchmark value of annual infection of risk equal to 1:10,000, the acceptable level of risk used for drinking water. The estimated Cmax values were found to be 6.54 × 10-5, 1.37 × 10-5, and 2.89 × 10-6 (oo) cysts/mL for Cryptosporidium, Giardia, and Ascaris, respectively.


Assuntos
Criptosporidiose , Cryptosporidium , Água Potável , Giardíase , Helmintos , Animais , Saúde Pública , Biofilmes , Reatores Biológicos , Giardia , Ascaris
5.
Reprod Domest Anim ; 58(2): 246-252, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36269691

RESUMO

Neuropeptide Y (NPY) is one of the most potent orexigenic factors which can produce diverse effects on behaviour and other physiological functions and is highly conserved in evolution. The present study was aimed to identify and associate SNPs in the 5' UTR and exon2 region of the NPY gene with reproduction and production traits in Kankrej cattle of Indian origin. Three mutations in the 5'-UTR region and one mutation in the exon2 region of the NPY gene were identified by PCR-SSCP and PCR-RFLP, respectively, followed by sequencing. Further, association studies were conducted with reproduction and production traits in Kankrej cattle. The GACCGA genotyped animals based on the 5'UTR variants indicated better dry period and calving interval, whereas with GGCCGG genotypes showed higher total lactation milk yield and 305-day milk yield in comparison to other genotypes. Also, service period and inter calving period varied significantly among the genotypes of exon2, as the GG genotyped animals had significantly longer calving interval. Other traits like age at first heat, age at first service and age at first calving were not affected by the mutations. So, the present study outlined that the bovine NPY gene may be considered to be one of the candidate gene for improvement of reproductive performance of cattle, after validation on large sample size.


Assuntos
Neuropeptídeo Y , Reprodução , Feminino , Bovinos/genética , Animais , Regiões 5' não Traduzidas/genética , Neuropeptídeo Y/genética , Reprodução/genética , Lactação/genética , Polimorfismo de Nucleotídeo Único , Leite
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA