Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 242(Pt 1): 124653, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141964

RESUMO

The largest subunit of RNAPII extends as the conserved unstructured heptapeptide consensus repeats Y1S2P3T4S5P6S7 and their posttranslational modification, especially the phosphorylation state at Ser2, Ser5 and Ser7 of CTD recruits different transcription factors involved in transcription. In the current study, fluorescence anisotropy, pull down assay and molecular dynamics simulation studies employed to conclude that peptidyl-prolyl cis/trans-isomerase Rrd1 has strong affinity for unphosphorylated CTD rather than phosphorylated CTD for mRNA transcription. Rrd1 preferentially interacts with unphosphorylated GST-CTD in comparison to hyperphosphorylated GST-CTD in vitro. Fluorescence anisotropy revealed that recombinant Rrd1 prefers to bind unphosphorylated CTD peptide in comparison to phosphorylated CTD peptide. In computational studies, the RMSD of Rrd1-unphosphorylated CTD complex was greater than the RMSD of Rrd1-pCTD complex. During 50 ns MD simulation run Rrd1-pCTD complex get dissociated twice viz. 20 ns to 30 ns and 40 ns to 50 ns, while Rrd1-unpCTD complex remain stable throughout the process. Additionally, the Rrd1-unphosphorylated CTD complexes acquire comparatively higher number of H-bonds, water bridges and hydrophobic interactions occupancy than Rrd1-pCTD complex, concludes that the Rrd1 interacts more strongly with the unphosphorylated CTD than the pCTD.


Assuntos
Peptidilprolil Isomerase , RNA Polimerase II , Peptidilprolil Isomerase/genética , RNA Polimerase II/química , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transcrição Gênica , Fosforilação , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA