Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 8(3): 5426-5438, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-28076839

RESUMO

Morbidly obese patients who accomplish substantial weight loss often display a long-term decline in their resting metabolism, causing even relatively restrained caloric intake to trigger a relapse to the obese state. Paradoxically, we observed that morbidly obese mice receiving chemotherapy for cancer experienced spontaneous weight reduction despite unabated ingestion of their high fat diet (HFD). This response to chemotherapy could also be achieved in morbidly obese mice without cancer. Optimally dosed methotrexate (MTX) or cyclophosphamide (CY) enabled the mice to completely and safely normalize their body weight despite continued consumption of obesogenic quantities of HFD. Weight reduction was not attributable to decreased HFD intake, enhanced energy expenditure or malabsorption. MTX or CY dosing significantly depleted both adipose tissue and preadipocyte progenitors. Remarkably, however, despite continued high fat feeding, a compensatory increase in hepatocyte lipid storage was not observed, but rather the opposite. Gene microarray liver analyses demonstrated that HFD mice receiving MTX or CY experienced significantly inhibited lipogenesis and lipid storage, whereas Enho (energy homeostasis) gene expression was significantly upregulated. Further metabolic studies employing a human hepatocellular line revealed that MTX treatment preserved robust oxidative phosphorylation, but also promoted mitochondrial uncoupling with a surge in proton leak. This is the first report that certain optimally dosed chemotherapeutic agents can induce weight loss in morbidly obese mice without reduced dietary intake, apparently by depleting stores of adipocytes and their progenitors, curtailment of lipogenesis, and inconspicuous disposal of incoming dietary lipid via a steady state partial uncoupling of mitochondrial oxidative phosphorylation.


Assuntos
Ciclofosfamida/farmacologia , Metabolismo Energético/efeitos dos fármacos , Metotrexato/farmacologia , Obesidade Mórbida , Adipócitos/efeitos dos fármacos , Animais , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória
2.
Cancer Immunol Immunother ; 65(7): 869-74, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27271549

RESUMO

Adoptive cell therapy (ACT) employing ex vivo-generated tumor antigen-specific CD8+ T cells shows tumor efficacy when the transferred cells possess both effector and memory functions. New strategies based on understanding of mechanisms that balance CD8+ T cell differentiation toward effector and memory responses are highly desirable. Emerging information confirms a central role for antigen-induced metabolic reprogramming in CD8+ T cell differentiation and clonal expansion. The mitochondrial protein uncoupling protein 2 (UCP2) is induced by antigen stimulation of CD8+ T cells; however, its role in metabolic reprogramming underlying differentiation and clonal expansion has not been reported. Employing genetic (siRNA) and pharmacologic (Genipin) approaches, we note that antigen-induced UCP2 expression reduces glycolysis, fatty acid synthesis and production of reactive oxygen species to balance differentiation with survival of effector CD8+ T cells. Inhibition of UCP2 promotes CD8+ T cell terminal differentiation into short-lived effector cells (CD62L(lo)KLRG1(Hi)IFNγ(Hi)) that undergo clonal contraction. These findings are the first to reveal a role for antigen-induced UCP2 expression in balancing CD8+ T cell differentiation and survival. Targeting UCP2 to regulate metabolic reprogramming of CD8+ T cells is an attractive new approach to augment efficacy of tumor therapy by ACT.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunoterapia Adotiva/métodos , Proteína Desacopladora 2/imunologia , Diferenciação Celular/imunologia , Epitopos de Linfócito T/imunologia , Humanos
3.
Haematologica ; 99(4): 688-96, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24179152

RESUMO

Novel combinations targeting new molecular vulnerabilities are needed to improve the outcome of patients with acute myeloid leukemia. We recently identified WEE1 kinase as a novel target in leukemias. To identify genes that are synthetically lethal with WEE1 inhibition, we performed a short interfering RNA screen directed against cell cycle and DNA repair genes during concurrent treatment with the WEE1 inhibitor MK1775. CHK1 and ATR, genes encoding two replication checkpoint kinases, were among the genes whose silencing enhanced the effects of WEE1 inhibition most, whereas CDK2 short interfering RNA antagonized MK1775 effects. Building on this observation, we examined the impact of combining MK1775 with selective small molecule inhibitors of CHK1, ATR and cyclin-dependent kinases. The CHK1 inhibitor MK8776 sensitized acute myeloid leukemia cell lines and primary leukemia specimens to MK1775 ex vivo, whereas smaller effects were observed with the MK1775/MK8776 combination in normal myeloid progenitors. The ATR inhibitor VE-821 likewise enhanced the antiproliferative effects of MK1775, whereas the cyclin-dependent kinase inhibitor roscovitine antagonized MK1775. Further studies showed that MK8776 enhanced MK1775-mediated activation of the ATR/CHK1 pathway in acute leukemia cell lines and ex vivo. These results indicate that combined cell cycle checkpoint interference with MK1775/MK8776 warrants further investigation as a potential treatment for acute myeloid leukemia.


Assuntos
Proteínas de Ciclo Celular/genética , Leucemia Mieloide Aguda/genética , Proteínas Nucleares/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/genética , Proteínas Tirosina Quinases/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Perfilação da Expressão Gênica , Inativação Gênica , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Pirimidinonas , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais , Ensaio Tumoral de Célula-Tronco
4.
Cancer Res ; 72(15): 3807-16, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22710435

RESUMO

Proliferating cells consume more glucose to cope with the bioenergetics and biosynthetic demands of rapidly dividing cells as well as to counter a shift in cellular redox environment. This study investigates the hypothesis that manganese superoxide dismutase (MnSOD) regulates cellular redox flux and glucose consumption during the cell cycle. A direct correlation was observed between glucose consumption and percentage of S-phase cells in MnSOD wild-type fibroblasts, which was absent in MnSOD homozygous knockout fibroblasts. Results from electron paramagnetic resonance spectroscopy and flow cytometric assays showed a significant increase in cellular superoxide levels in S-phase cells, which was associated with an increase in glucose and oxygen consumption, and a decrease in MnSOD activity. Mass spectrometry results showed a complex pattern of MnSOD-methylation at both lysine (68, 89, 122, and 202) and arginine (197 and 216) residues. MnSOD protein carrying a K89A mutation had significantly lower activity compared with wild-type MnSOD. Computational-based simulations indicate that lysine and arginine methylation of MnSOD during quiescence would allow greater accessibility to the enzyme active site as well as increase the positive electrostatic potential around and within the active site. Methylation-dependent changes in the MnSOD conformation and subsequent changes in the electrostatic potential around the active site during quiescence versus proliferation could increase the accessibility of superoxide, a negatively charged substrate. These results support the hypothesis that MnSOD regulates a "metabolic switch" during progression from quiescent through the proliferative cycle. We propose MnSOD as a new molecular player contributing to the Warburg effect.


Assuntos
Ciclo Celular , Metabolismo Energético , Superóxido Dismutase/fisiologia , Animais , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proliferação de Células , Células Cultivadas , Embrião de Mamíferos , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Técnicas de Inativação de Genes , Glucose/metabolismo , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Mamíferos/fisiologia , Redes e Vias Metabólicas/fisiologia , Camundongos , Modelos Moleculares , Oxigênio/metabolismo , Superóxido Dismutase/química , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Transfecção
5.
Blood ; 119(12): 2863-72, 2012 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-22267604

RESUMO

To identify rational therapeutic combinations with cytarabine (Ara-C), we developed a high-throughput, small-interference RNA (siRNA) platform for myeloid leukemia cells. Of 572 kinases individually silenced in combination with Ara-C, silencing of 10 (1.7%) and 8 (1.4%) kinases strongly increased Ara-C activity in TF-1 and THP-1 cells, respectively. The strongest molecular concepts emerged around kinases involved in cell-cycle checkpoints and DNA-damage repair. In confirmatory siRNA assays, inhibition of WEE1 resulted in more potent and universal sensitization across myeloid cell lines than siRNA inhibition of PKMYT1, CHEK1, or ATR. Treatment of 8 acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), and chronic myeloid leukemia (CML) cell lines with commercial and the first-in-class clinical WEE1 kinase inhibitor MK1775 confirmed sensitization to Ara-C up to 97-fold. Ex vivo, adding MK1775 substantially reduced viability in 13 of 14 AML, CML, and myelodysplastic syndrome patient samples compared with Ara-C alone. Maximum sensitization occurred at lower to moderate concentrations of both drugs. Induction of apoptosis was increased using a combination of Ara-C and MK1775 compared with using either drug alone. WEE1 is expressed in primary AML, ALL, and CML specimens. Data from this first siRNA-kinome sensitizer screen suggests that inhibiting WEE1 in combination with Ara-C is a rational combination for the treatment of myeloid and lymphoid leukemias.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/metabolismo , Citarabina/farmacologia , Leucemia Mieloide/enzimologia , Proteínas Nucleares/metabolismo , Fosfotransferases/análise , Proteínas Tirosina Quinases/metabolismo , Western Blotting , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Ensaios de Triagem em Larga Escala , Humanos , Fosfotransferases/metabolismo , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Free Radic Biol Med ; 49(1): 40-9, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20307652

RESUMO

Polychlorinated biphenyls (PCBs) are environmental chemical contaminants that can produce reactive oxygen species (ROS) by autoxidation of dihydroxy-PCBs and redox-cycling. We investigate the hypothesis that PCB induced perturbations in ROS signaling regulate the entry of quiescent cells into the proliferative cycle. Quiescent MCF-10A human breast epithelial cells were incubated with 0-3 micromolar of 2-(4-chlorophenyl)benzo-1,4-quinone (4-Cl-BQ), 2, 2', 4, 4', 5, 5'-hexachlorobiphenyl (PCB 153), and Aroclor 1254 for 4 days. Cells were replated at a lower density and analyzed for cell cycle phase distributions, ROS levels, MnSOD expression, and cyclin D1 protein levels. Quiescent cells incubated with 4-Cl-BQ showed the maximal delay in entering S phase. This delay was associated with a decrease in MnSOD activity, protein and mRNA levels, and an increase in cellular ROS levels. Results from the mRNA turnover assay showed that the 4-Cl-BQ treatment selectively enhanced the degradation of the 4.2kb MnSOD transcript, while the half-life of the 1.5 kb transcript did not change. Accumulation of cyclin D1 protein levels in replated cells was suppressed in cells treated with 4-Cl-BQ. Pretreatment of quiescent cells with polyethylene glycol-conjugated superoxide dismutase and catalase suppressed 4-Cl-BQ induced increase in ROS levels, which was consistent with an increase in cyclin D1 accumulation, and entry into S phase. These results showed 4-Cl-BQ induced perturbations in ROS signaling inhibit the entry of quiescent cells into S phase.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Células Epiteliais/efeitos dos fármacos , Bifenilos Policlorados/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Mama/patologia , Neoplasias da Mama/fisiopatologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Separação Celular , Ciclina D1/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Citometria de Fluxo , Humanos , Superóxido Dismutase/metabolismo
7.
Environ Int ; 36(8): 924-30, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20163859

RESUMO

Polychlorinated biphenyls (PCBs) and their metabolites are environmental chemical contaminants which can produce reactive oxygen species (ROS) by auto-oxidation of di-hydroxy PCBs as well as the reduction of quinones and redox-cycling. We investigate the hypothesis that 2-(4-chlorophenyl)benzo-1,4-quinone (4-Cl-BQ), a metabolite of 4-chlorobiphenyl (PCB3), induced ROS-signaling inhibits cellular proliferation. Monolayer cultures of exponentially growing asynchronous human non-malignant prostate epithelial cells (RWPE-1) were incubated with 0-6 µM of 4-Cl-BQ and harvested at the end of 72 h of incubation to assess antioxidant enzyme expression, cellular ROS levels, cell growth, and cell cycle phase distributions. 4-Cl-BQ decreased manganese superoxide dismutase (MnSOD) activity, protein, and mRNA levels. 4-Cl-BQ treatment increased dihydroethidium (DHE) fluorescence, which was suppressed in cells pretreated with polyethylene glycol conjugated superoxide dismutase (PEG-SOD). The increase in ROS levels was associated with a decrease in cell growth, and an increase in the percentage of S-phase cells. These effects were suppressed in cells pretreated with PEG-SOD. 4-Cl-BQ treatment did not change the protein levels of phosphorylated H2AX at the end of 72 h of incubation, suggesting that the inhibition in cell growth and accumulation of cells in S-phase at the end of the treatments were probably not due to 4-Cl-BQ induced DNA double strand break. These results demonstrate that MnSOD activity and ROS-signaling perturb proliferation in 4-Cl-BQ treated in vitro cultures of human prostate cells.


Assuntos
Compostos de Bifenilo/toxicidade , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Quinonas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Células Cultivadas , Humanos , Masculino , Próstata/efeitos dos fármacos , Superóxido Dismutase/metabolismo
8.
Cancer Biol Ther ; 8(20): 1962-71, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19738419

RESUMO

Manganese superoxide dismutase (SOD2) is a nuclear encoded and mitochondria localized antioxidant enzyme that converts mitochondria derived superoxide to hydrogen peroxide. This study investigates the hypothesis that mitochondria derived reactive oxygen species (ROS) regulate ionizing radiation (IR) induced transformation in normal cells. Mouse embryonic fibroblasts (MEFs) with wild type SOD2 (+/+), heterozygous SOD2 (+/-), and homozygous SOD2 (-/-) genotypes were irradiated with equitoxic doses of IR, and assayed for transformation frequency, cellular redox environment, DNA damage, and cell cycle checkpoint activation. Transformation frequency increased ( approximately 5-fold) in SOD2 (-/-) compared to SOD2 (+/+) MEFs. Cellular redox environment (GSH, GSSG, DHE and DCFH-oxidation) did not show any significant change within 24 h post-IR. However, a significant increase in cellular ROS levels was observed at 72 h post-IR in SOD2 (-/-) compared to SOD2 (+/+) MEFs, which was consistent with an increase in GSSG in SOD2 (-/-) MEFs. Late ROS accumulation was associated with an increase in micronuclei frequency in SOD2 (-/-) MEFs. Exit from G(2) was accelerated in irradiated SOD2 (+/-) and SOD2 (-/-) compared to SOD2 (+/+) MEFs. These results support the hypothesis that SOD2 activity and mitochondria generated ROS regulate IR induced transformation in mouse embryonic fibroblasts.


Assuntos
Transformação Celular Neoplásica/efeitos da radiação , Fibroblastos/efeitos da radiação , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Dano ao DNA , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Citometria de Fluxo , Genótipo , Glutationa/metabolismo , Immunoblotting , Camundongos , Camundongos Knockout , Micronúcleos com Defeito Cromossômico/efeitos da radiação , Radiação Ionizante , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
9.
Antioxid Redox Signal ; 11(12): 2985-3011, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19505186

RESUMO

The cellular oxidation and reduction (redox) environment is influenced by the production and removal of reactive oxygen species (ROS). In recent years, several reports support the hypothesis that cellular ROS levels could function as ''second messengers'' regulating numerous cellular processes, including proliferation. Periodic oscillations in the cellular redox environment, a redox cycle, regulate cell-cycle progression from quiescence (G(0)) to proliferation (G(1), S, G(2), and M) and back to quiescence. A loss in the redox control of the cell cycle could lead to aberrant proliferation, a hallmark of various human pathologies. This review discusses the literature that supports the concept of a redox cycle controlling the mammalian cell cycle, with an emphasis on how this control relates to proliferative disorders including cancer, wound healing, fibrosis, cardiovascular diseases, diabetes, and neurodegenerative diseases. We hypothesize that reestablishing the redox control of the cell cycle by manipulating the cellular redox environment could improve many aspects of the proliferative disorders.


Assuntos
Ciclo Celular , Doença , Animais , Humanos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA