Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 355: 120441, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38430879

RESUMO

Microalgae possess the prospective to be efficiently involved in bioremediation and biodiesel generation. However, conditions of stress often restrict their growth and diminish different metabolic processes. The current study evaluates the potential of GABA to improve the growth of the microalga Chlorella sorokiniana under Cr (III) stress through the exogenous administration of GABA. The research also investigates the concurrent impact of GABA and Cr (III) stress on various metabolic and biochemical pathways of the microalgae. In addition to the control, cultures treated with Cr (III), GABA, and both Cr (III) and GABA treated were assessed for accurately analysing the influence of GABA. The outcomes illustrated that GABA significantly promoted growth of the microalgae, resulting in higher biomass productivity (19.14 mg/L/day), lipid productivity (3.445 mg/L/day) and lipid content (18%) when compared with the cultures under Cr (III) treatment only. GABA also enhanced Chl a content (5.992 µg/ml) and percentage of protein (23.75%). FAMEs analysis by GC-MS and total lipid profile revealed that GABA treatment can boost the production of SFA and lower the level of PUFA, a distribution ideal for improving biodiesel quality. ICP-MS analysis revealed that GABA supplementation could extend Cr (III) mitigation level up to 97.7%, suggesting a potential strategy for bioremediation. This novel study demonstrates the merits of incorporating GABA in C. sorokiniana cultures under Cr (III) stress, in terms of its potential in bioremediation and biodiesel production without disrupting the pathways of photosynthesis and protein production.


Assuntos
Chlorella , Microalgas , Biocombustíveis , Estudos Prospectivos , Proteínas/metabolismo , Microalgas/metabolismo , Biomassa , Lipídeos , Suplementos Nutricionais , Ácido gama-Aminobutírico/metabolismo
2.
Heliyon ; 9(9): e19353, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37662773

RESUMO

Background: The current study aimed to develop a laboratory-scale biofilm photobioreactor system for biofuel production. Scope & Approach: During the investigation, Jute was discovered to be the best, cheap, hairy, open-pored supporting material for biofilm formation. Microalgae & yeast consortium was used in this study for biofilm formation. Conclusion: The study identified microalgae and yeast consortium as a promising choice and ideal partners for biofilm formation with the highest biomass yield (47.63 ± 0.93 g/m2), biomass productivity (4.39 ± 0.29 to 7.77 ± 0.05 g/m2/day) and lipid content (36%) over 28 days cultivation period, resulting in a more sustainable and environmentally benign fuel that could become a reality in the near future.

3.
Chemosphere ; 340: 139858, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37611756

RESUMO

Production of low-cost biomass and its utilization for producing cost effective and eco-friendly bioenergy as well as for removing heavy metals from water can be explored as an approach to meet the sustainable development goals. In light of the above-mentioned study, hydrothermal liquefaction (HTL) of Billy goat weed (BGW; Ageratum conyzoides) was carried out to produce bio-oil. In addition, the residual biochar from the HTL process was activated to obtain Act-BC and was further modified to produce MnO2-loaded biochar (Act-BC@MnO2-25%). The HTL of BGW was done at three different temperatures, i.e., 250 °C, 350 °C and 450 °C in a high-pressure batch reactor to maximize the bio-oil yield. Also, two different HTL methods i.e., single-stage HTL and triple-stage HTL of BGW were compared and discussed in detail. The bio-oil obtained via the triple-stage HTL was rich in carbon, hydrogen, and nitrogen. It also showed a higher heating value (HHV) and bio-oil yield (46%) than the single-stage. The residual biochar obtained at 450 °C (Act-BC) and MnO2 modified (Act-BC@MnO2-25%) were then tested to adsorb multiple heavy metal (i.e., Pb(II), Cd(II), Cu(II), and Ni(II)) from water. The kinetics data obtained from the adsorption experiment with Act-BC@MnO2-25% were well fitted to PSO kinetics model. The isotherm data were well aligned with the Langmuir model; the adsorption capacity of Act-BC@MnO2-25% was estimated to be 198.70 ± 11.40 mg g-1, 93.70 ± 6.60 mg g-1, 78.90 ± 7.20 mg g-1 and 30.50 ± 2.10 mg g-1 for Pb(II), Cd(II), Cu(II), and Ni(II), respectively. Furthermore, Act-BC@MnO2-25% remained active for metal ions absorption even after six consecutive uses. The result obtained from this study clearly demonstrates that the triple-stage HTL of BGW is a promising technology to achieve both remediation of metal-contaminated water and production of bioenergy.


Assuntos
Ageratum , Metais Pesados , Água , Cádmio , Chumbo , Compostos de Manganês , Óxidos
4.
Aquat Toxicol ; 260: 106555, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37196506

RESUMO

The proficiency of microalgae to resist heavy metals has potential to be beneficial in resolving various environmental challenges. Global situations such as the need for cost-effective and ecological ways of remediation of contaminated water and for the development of bioenergy sources could employ microalgae. In a medium with the presence of heavy metals, microalgae utilize different mechanisms to uptake the metal and further detoxify it. Biosorption and the next process of bioaccumulation are two such major steps and they also include the assistance of different transporters at different stages of heavy metal tolerance. This capability has also proved to be efficient in eradicating many heavy metals like Chromium, Copper, Lead, Arsenic, Mercury, Nickel and Cadmium from the environment they are present in. This indicates the possibility of the application of microalgae as a biological way of remediating contaminated water. Heavy metal resistance quality also allows various microalgal species to contribute in the generation of biofuels like biodiesel and biohydrogen. Many research works have also explored the capacity of microalgae in nanotechnology for the formation of nanoparticles due to its relevant characteristics. Various studies have also revealed that biochar deduced from microalgae or a combination of biochar and microalgae can have wide applications specially in deprivation of heavy metals from an environment. This review focuses on the strategies adopted by microalgae, various transporters involved in the process of tolerating heavy metals and the applications where microalgae can participate owing to its ability to resist metals.


Assuntos
Metais Pesados , Microalgas , Poluentes Químicos da Água , Biodegradação Ambiental , Poluentes Químicos da Água/toxicidade , Metais Pesados/toxicidade , Metais Pesados/análise , Água
5.
J Dent Res ; 100(2): 187-193, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33138663

RESUMO

Understanding the pathophysiology of the coronavirus disease 2019 (COVID-19) infection remains a significant challenge of our times. The gingival crevicular fluid being representative of systemic status and having a proven track record of detecting viruses and biomarkers forms a logical basis for evaluating the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The study aimed to assess gingival crevicular fluid (GCF) for evidence of SARS-CoV-2 in 33 patients who were deemed to be COVID-19 positive upon nasopharyngeal sampling. An attempt was also made to comparatively evaluate it with saliva in terms of its sensitivity, as a diagnostic fluid for SARS-CoV-2. GCF and saliva samples were collected from 33 COVID-19-confirmed patients. Total RNA was extracted using NucliSENS easyMAG (bioMérieux) and eluted in the elution buffer. Envelope gene (E gene) of SARS-CoV-2 and human RNase P gene as internal control were detected in GCF samples by using the TRUPCR SARS-CoV-2 RT qPCR kit V-2.0 (I) in an Applied Biosystems 7500 real-time machine. A significant majority of both asymptomatic and mildly symptomatic patients exhibited the presence of the novel coronavirus in their GCF samples. Considering the presence of SARS-CoV-2 RNA in the nasopharyngeal swab sampling as gold standard, the sensitivity of GCF and saliva, respectively, was 63.64% (confidence interval [CI], 45.1% to 79.60%) and 64.52% (CI, 45.37% to 80.77%). GCF was found to be comparable to saliva in terms of its sensitivity to detect SARS-CoV-2. Saliva samples tested positive in 3 of the 12 patients whose GCF tested negative, and likewise GCF tested positive for 2 of the 11 patients whose saliva tested negative on real-time reverse transcription polymerase chain reaction. The results establish GCF as a possible mode of transmission of SARS-CoV-2, which is the first such report in the literature, and also provide the first quantifiable evidence pointing toward a link between the COVID-19 infection and oral health.


Assuntos
COVID-19/diagnóstico , Líquido do Sulco Gengival/virologia , SARS-CoV-2/isolamento & purificação , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Saliva/virologia , Adulto Jovem
7.
Bioresour Technol ; 297: 122489, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31818721

RESUMO

A low-cost small-scale high-rate algal pond (HRAP) was constructed to investigate the synergistic potential of a novel oleaginous microalga, Chlorella sorokiniana for phyco-mitigation, and biodiesel production using raw urban wastewater. An enhanced nutrient removal (97%), total organic carbon (74%), alkalinity (70%) and hardness (75%) from the wastewater was obtained. The microalga dominated in the HRAP as ~90% increase in the dissolved oxygen with high biomass (1.13 g/L) was noted. The microalga biomass showed sufficient lipid content (~31% of dry cell weight) as compared to control (Bold's Basal media). The total lipid profiling of the microalga cultivated in wastewater showed augmentation in the levels of both storage and neutral lipids with good quality fatty acids composition. Moreover, the sucker fishes grew healthy in the treated wastewater with an increase in body weight.


Assuntos
Chlorella , Microalgas , Aquicultura , Biocombustíveis , Biomassa , Águas Residuárias
8.
Sci Rep ; 9(1): 11384, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31388042

RESUMO

The present study investigates the hydrothermal liquefaction (HTL) of harmful green macroalgal blooms at a temperature of 270 °C with, and without a catalyst with a holding time of 45 min. The effect of different catalysts on the HTL product yield was also studied. Two separation methods were used for recovering the biocrude oil yield from the solid phase. On comparision with other catalyst, Na2CO3 was found to produce higher yiled of bio-oil. The total bio-oil yield was 20.10% with Na2CO3, 18.74% with TiO2, 17.37% with CaO, and 14.6% without a catalyst. The aqueous phase was analyzed for TOC, COD, TN, and TP to determine the nutrient enrichment of water phase for microalgae cultivation. Growth of four microalgae strains viz., Chlorella Minutissima, Chlorella sorokiniana UUIND6, Chlorella singularis UUIND5 and Scenedesmus abundans in the aqueous phase were studied, and compared with a standard growth medium. The results indicate that harmful macroalgal blooms are a suitable feedstock for HTL, and its aqueous phase offers a promising nutrient source for microalgae.


Assuntos
Biocombustíveis , Carbonatos/química , Proliferação Nociva de Algas , Microbiologia Industrial/métodos , Microalgas/metabolismo , Biomassa , Catálise , Temperatura Alta , Nutrientes/metabolismo , Microbiologia da Água
9.
Aquat Toxicol ; 209: 49-55, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30711855

RESUMO

Organophosphorus compounds exhibit a wide range of toxicity to mammals. In this study the effect of malathion on the growth and biochemical parameters of microalgae was evaluated. Three microalgae (Micractinium pusillum UUIND2, Chlorella singulari UUIND5 and Chlorella sorokiniana UUIND6) were used in this study. Among the three algal strains tested, Chlorella sorokiniana UUIND6 was able to tolerate 100 ppm of malathion. The photosynthetic pigments, the protein, carbohydrate and lipid contents of microalgal cells were also analyzed. About 90% degradation was recorded in 25 ppm, 50 ppm and 70% was recorded in 100 ppm of malathion by Chlorella sorokiniana. A mechanism of degradation of malathion by Chlorella sorokiniana is proposed in this study. Activity of carboxylesterase was increased in algal cells cultivated in malathion containing medium which confirmed that malathion degraded into phosphate. Increased amount of Malondialdehye (MDA) indicate the development of free radicals under the stress of malathion which substantialy increase de novo TAG biosynthesis, while increased level of superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT) suggested their association in scavenging of free radical.


Assuntos
Carboxilesterase/metabolismo , Microalgas/metabolismo , Compostos Organofosforados/toxicidade , Praguicidas/toxicidade , Triglicerídeos/biossíntese , Biocombustíveis , Biomassa , Tamanho Celular , Chlorella/citologia , Chlorella/efeitos dos fármacos , Chlorella/metabolismo , Inativação Metabólica/efeitos dos fármacos , Malation/toxicidade , Microalgas/citologia , Microalgas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade
10.
Toxicol Int ; 19(3): 260-6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23293464

RESUMO

During the present investigation the effect of α-tocopherol (100 µmolL(-1)) in prevention of testicular toxicity induced by atrazine in goat Capra hircus have been analyzed. Vitamin E (α-tocopherol) at dose level 100 µmolL(-1) provides attenuation over the histopathological changes generated by pesticide atrazine (100 nmolml(-1)). Small pieces (approximately 1mm(3)) of testicular tissue were divided into three groups (one control group + two experimental groups). Experimental group (A) was supplemented with 100 nmolml(-1) concentration of atrazine and experimental group (B) was supplemented with 100 nmolml(-1) atrazine and 100 µmolL(-1) concentrations of vitamin E (α-Tocopherol) and harvesting was carried out after 1, 4 and 8 hrs of exposure. Control was run along with all the experimental groups. In the experimental group (A) treated with atrazine at dose level 100 nmolml(-1), revealed histomorphological alterations in the seminiferous tubule. After one hour of exposure duration small vacuoles in cytoplasm of the Sertoli cells and spermatogonia were observed. Chromolysis at pycnosis were also noticed in the spermatogonia and spermatids. In the experimental group (B) exposed with atrazine and simultaneously supplemented with Vitamin E also showed degeneration but it was milder as compared with experimental group treated with atrazine without antioxidant. Atrazine exposure induced a decline in diameter of spermatocytes from 10.51 ± 0.2052 µm in control to 7.915 ± 0.2972, 7.5 ± 0.211 and 7.14 ± 0.225 µm after exposure of 1, 4 and 8 hrs respectively but in case of atrazine supplemented with vitamin E [experimental group (B)], there was less decline in cell diameter that was 8.5 ± 0.1865, 8.1 ± 0.1201 and 7.8 ± 0.2066µm after exposure of 1, 4 and 8 hrs respectively. The result demonstrated that vitamin E delays the degenerative changes induced by atrazine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA