Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 22, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172139

RESUMO

Springtails (Collembola) inhabit soils from the Arctic to the Antarctic and comprise an estimated ~32% of all terrestrial arthropods on Earth. Here, we present a global, spatially-explicit database on springtail communities that includes 249,912 occurrences from 44,999 samples and 2,990 sites. These data are mainly raw sample-level records at the species level collected predominantly from private archives of the authors that were quality-controlled and taxonomically-standardised. Despite covering all continents, most of the sample-level data come from the European continent (82.5% of all samples) and represent four habitats: woodlands (57.4%), grasslands (14.0%), agrosystems (13.7%) and scrublands (9.0%). We included sampling by soil layers, and across seasons and years, representing temporal and spatial within-site variation in springtail communities. We also provided data use and sharing guidelines and R code to facilitate the use of the database by other researchers. This data paper describes a static version of the database at the publication date, but the database will be further expanded to include underrepresented regions and linked with trait data.


Assuntos
Artrópodes , Animais , Ecossistema , Florestas , Estações do Ano , Solo
2.
Nat Commun ; 14(1): 674, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750574

RESUMO

Soil life supports the functioning and biodiversity of terrestrial ecosystems. Springtails (Collembola) are among the most abundant soil arthropods regulating soil fertility and flow of energy through above- and belowground food webs. However, the global distribution of springtail diversity and density, and how these relate to energy fluxes remains unknown. Here, using a global dataset representing 2470 sites, we estimate the total soil springtail biomass at 27.5 megatons carbon, which is threefold higher than wild terrestrial vertebrates, and record peak densities up to 2 million individuals per square meter in the tundra. Despite a 20-fold biomass difference between the tundra and the tropics, springtail energy use (community metabolism) remains similar across the latitudinal gradient, owing to the changes in temperature with latitude. Neither springtail density nor community metabolism is predicted by local species richness, which is high in the tropics, but comparably high in some temperate forests and even tundra. Changes in springtail activity may emerge from latitudinal gradients in temperature, predation and resource limitation in soil communities. Contrasting relationships of biomass, diversity and activity of springtail communities with temperature suggest that climate warming will alter fundamental soil biodiversity metrics in different directions, potentially restructuring terrestrial food webs and affecting soil functioning.


Assuntos
Artrópodes , Ecossistema , Humanos , Animais , Biodiversidade , Tundra , Solo
3.
Plant Physiol Biochem ; 146: 42-54, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31731113

RESUMO

Depending on the environment, sunlight can positively or negatively affect litter decomposition, through the ensemble of direct and indirect processes constituting photodegradation. Which of these processes predominate depends on the ecosystem studied and on the spectral composition of sunlight received. To examine the relevance of photodegradation for litter decomposition in forest understoreys, we filtered ultraviolet radiation (UV) and blue light from leaves of Fagus sylvatica and Betula pendula at two different stages of senescence in both a controlled-environment experiment and outdoors in four different forest stands (Picea abies, Fagus sylvatica, Acer platanoides, Betula pendula). Controlling for leaf orientation and initial differences in leaf chlorophyll and flavonol concentrations; we measured mass loss at the end of each experiment and characterised the phenolic profile of the leaf litter following photodegradation. In most forest stands, less mass was lost from decomposing leaves that received solar UV radiation compared with those under UV-attenuating filters, while in the controlled environment UV-A radiation either slightly accelerated or had no significant effect on photodegradation, according to species identity. Only a few individual phenolic compounds were affected by our different filter treatments, but photodegradation did affect the phenolic profile. We can conclude that photodegradation has a small stand- and species-specific effect on the decomposition of surface leaf litter in forest understoreys during the winter following leaf fall in southern Finland. Photodegradation was wavelength-dependent and modulated by the canopy species filtering sunlight and likely creating different combinations of spectral composition, moisture, temperature and snowpack characteristics.


Assuntos
Ecossistema , Florestas , Raios Ultravioleta , Finlândia , Fotólise , Folhas de Planta
4.
Oecologia ; 191(1): 191-203, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31363838

RESUMO

Sunlight can accelerate the decomposition process through an ensemble of direct and indirect processes known as photodegradation. Although photodegradation is widely studied in arid environments, there have been few studies in temperate regions. This experiment investigated how exposure to solar radiation, and specifically UV-B, UV-A, and blue light, affects leaf litter decomposition under a temperate forest canopy in France. For this purpose, we employed custom-made litterbags built using filters that attenuated different regions of the solar spectrum. Litter mass loss and carbon to nitrogen (C:N) ratio of three species: European ash (Fraxinus excelsior), European beech (Fagus sylvatica) and pedunculate oak (Quercus robur), differing in their leaf traits and decomposition rate, were analysed over a period of 7-10 months. Over the entire period, the effect of treatments attenuating blue light and solar UV radiation on leaf litter decomposition was similar to that of our dark treatment, where litter lost 20-30% less mass and had a lower C:N ratio than under the full-spectrum treatment. Moreover, decomposition was affected more by the filter treatment than mesh size, which controlled access by mesofauna. The effect of filter treatment differed among the three species and appeared to depend on litter quality (and especially C:N), producing the greatest effect in recalcitrant litter (F. sylvatica). Even under the reduced irradiance found in the understorey of a temperate forest, UV radiation and blue light remain important in accelerating surface litter decomposition.


Assuntos
Árvores , Raios Ultravioleta , Florestas , França , Folhas de Planta
5.
Sci Total Environ ; 649: 1065-1074, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30308878

RESUMO

Conventional, intensively managed coffee plantations are currently facing environmental challenges. The use of shade trees and the organic management of coffee crops are welcome alternatives, aiming to reduce synthetic inputs and restore soil biological balance. However, little is known about the impacts of the different types of shade tree species on soil functioning and fauna. In this paper, we assess soil nutrient availability and food web structure on a 17-year old experimental coffee plantation in Turrialba in Costa Rica. Three shade types (unshaded coffee, shaded with Terminalia amazonia, and shaded with Erythrina poepiggiana) combined with two management practices (organic and conventional) were evaluated. Total C and N, inorganic N and Olsen P content, soil pH, global soil fertility, and nematode and microarthropod communities were measured in the top 10 cm soil layer, with the objective of determining how shade tree species impact the soil food web and soil C, N and P cycling under different types of management. We noted a decrease in soil inorganic N content and nematode density under conventional management (respectively -47% and -91% compared to organic management), which suggested an important biological imbalance, possibly caused by the lack of organic amendment. Under conventional management, soil nutrient availability and fauna densities were higher under shade, regardless of the shade tree species. Under organic management, only soils under E. poeppigiana, a heavily pruned, N2-fixing species, had increased nutrient availability and fauna density, while T. amazonia shade had a null or negative impact. The effects of coffee management and shade type on soil nutrient availability were mirrored by changes in soil food web structure. Higher fertility was recorded in soil with balanced food webs. These results emphasize the importance of the choice of shade tree species for soil functions in low input systems, more so than in fertilized systems.


Assuntos
Coffea/crescimento & desenvolvimento , Cadeia Alimentar , Agricultura Florestal , Agricultura Orgânica , Solo/química , Árvores/metabolismo , Ciclo do Carbono , Costa Rica , Ciclo do Nitrogênio , Fósforo/metabolismo , Especificidade da Espécie
6.
Oecologia ; 137(2): 269-76, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12898384

RESUMO

Dynamic approaches to forest ecosystems are surprisingly rare. Here we report about successional changes in collembolan community structure and microbial performances during forest rotation. The study was carried out in a chronosequence of four spruce forest stands (5-, 25-, 45-, and 95 years old; Tharandter forest, Germany). CO2 release significantly increased after clear-cutting and the amount of C stored in the organic layer subsequently declined. The early phase of forest rotation was characterized by a very active decomposer microflora, stimulation of both fungi and bacteria as well as by a high abundance of surface-oriented Collembola. In addition, collembolan species turnover was accelerated. While the biomass of fungi further increased at intermediate stages of forest rotation, the metabolic activity of the microflora was low, the functional diversity of bacteria declined and the collembolan community became impoverished. Euedaphic species dominated during this stage of forest development. These changes can be explained by both reduction in microhabitat diversity and depletion of food sources associated with an accumulation of recalcitrant soil organic matter. Results of the General Regression Model procedure indicate a shift from specific associations between collembolan functional groups and microbiota at the early stage of forest rotation to a more diffuse pattern at intermediate stages. Though the hypothesis that Collembola are relatively responsive to changes in environmental conditions is confirmed, consistently high community similarity suggests a remarkable persistence of some components of microarthropod assemblages. Our study provides evidence for substantial ecosystem-level implications of changes in the soil food web during forest rotation. Moreover, correlations between bacterial parameters and Collembola point to the overarching impact of differences in the composition of the microbial community on microarthropods.


Assuntos
Agricultura Florestal , Insetos , Microbiologia do Solo , Animais , Cadeia Alimentar , Picea , Dinâmica Populacional , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA