Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 838(Pt 1): 156049, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35598661

RESUMO

Reductive dissolution is one of the main causes for arsenic (As) mobilisation in flooded soils while biomethylation and biovolatilisation are two microbial mechanisms that greatly influence the mobility and toxicity of As. Climate change results in more extreme weather events such as flooding and higher temperatures, potentially leading to an increase in As release and biotransformations. Here, we investigated the effects of flooding and temperature on As release, biomethylation and biovolatilisation from As-rich soils with different pH and source of As (one acidic and anthropogenic (Salanfe) and one neutral and geogenic (Liesberg)). Flooded soils incubated at 23 °C for two weeks showed a ~ 3-fold (Liesberg site) and ~ 7-fold (Salanfe site) increase in the total As concentration of soil solution compared to those incubated at 18 °C. Methyl- and thio-As species were found in the acidic soil and soil solution. High temperatures enhanced thiolation and methylation although inorganic As was predominant. We also show that volatile As fluxes increased more than 4-fold between treatments, from 18 ± 5 ng/kg/d at 18 °C to 75 ± 6 ng/kg/d at 23 °C from Salanfe soil. Our results suggest that high As soils with acidic pH can become an important source of As to the surrounding environment according to realistic climatic scenarios, and that biovolatilisation is very sensitive to increases in temperature. This study provides new data and further justifies further investigations into climate-induced changes on As release and speciation and its links to important factors such as microbial ecology and sulfate or iron biogeochemistry. SYNOPSIS: In the studied Swiss soils, elevated temperature increases arsenic mobility through volatilisation and methylation.


Assuntos
Arsênio , Poluentes do Solo , Arsênio/análise , Biotransformação , Solo , Poluentes do Solo/análise , Suíça , Temperatura
2.
DNA Cell Biol ; 41(1): 64-70, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34941367

RESUMO

The main source of arsenic exposure to humans worldwide is the diet, in particular, drinking water, rice, and seafood. Although arsenic is often considered toxic, it can exist in food as more than 300 chemical species with different toxicities. This diversity makes it difficult for food safety and health authorities to regulate arsenic levels in food, which are currently based on a few arsenic species. Of particular interest are arsenolipids, a type of arsenic species widely found in seafood. Emerging evidence indicates that there are risks associated with human exposure to arsenolipids (e.g., accumulation in breast milk, ability to cross the blood-brain barrier and accumulate in the brain, and potential development of neurodegenerative disorders). Still, more research is needed to fully understand the impact of arsenolipid exposure, which requires establishing interdisciplinary collaborations.


Assuntos
Arsênio , Encéfalo
3.
Food Chem ; 212: 189-97, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27374523

RESUMO

Humans are exposed to organic arsenic species through their diet and therefore, are susceptible to arsenic toxicity. Investigating the transformations occurring in the gastrointestinal tract will influence which arsenic species to focus on when studying metabolism in cells. Using a physiologically based extraction test, the bioaccessibility of arsenic species was determined after the simulated gastrointestinal digestion of rice, seaweed and fish. Pure standards of the major arsenic species present in these foodstuffs (arsenic glutathione complexes, arsenosugars and short chain fatty acids) were also evaluated to assess the effect of the food matrix on bioaccessibility and transformation. Approximately 80% of arsenic is released from these foodstuffs, potentially becoming available. Hydrolysis and demethylation of arsenic glutathione complexes and arsenosugars standards was observed, but no transformations occurred to arsenosugars present in seaweed. Demethylation of MA and DMA from rice occurs increasing the amount of inorganic arsenic species available for metabolism.


Assuntos
Arseniatos/química , Arsênio/química , Trato Gastrointestinal/química , Monossacarídeos/química , Oryza/química , Alga Marinha/química , Animais , Arsênio/análise , Peixes , Humanos
4.
J Environ Sci (China) ; 49: 222-232, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29216971

RESUMO

Arsenic metabolism in living organisms is dependent on the ability of different arsenic species to traverse biological membranes. Simple diffusion provides an alternative influx and efflux route to mediated transport mechanisms that can increase the amount of arsenic available for metabolism in cells. Using octanol-water and liposome-water partition coefficients, the ability of arsenous acid, arsenate, methylarsonate, dimethylarsinate, thio-methylarsonate, thio-dimethylarsinic acid, arsenotriglutathione and monomethylarsonic diglutathione to diffuse through the lipid bilayer of cell membranes was investigated. Molecular modelling of arsenic species was used to explain the results. All arsenic species with the exception of arsenate, methylarsonate and thio-methylarsonate were able to diffuse through the lipid bilayer of liposomes, with liposome-water partition coefficients between 0.04 and 0.13. Trivalent arsenic species and thio-pentavalent arsenic species showed higher partition coefficients, suggesting that they can easily traverse cell membranes by passive simple diffusion. Given the higher toxicity of these species compared to oxo-pentavalent arsenic species, this study provides evidence supporting the risk associated with human exposure to trivalent and thio-arsenic species.


Assuntos
Arsênio/metabolismo , Membrana Celular/metabolismo , Poluentes Químicos da Água/metabolismo , Arseniatos , Arsênio/toxicidade , Arsenicais , Arsenitos , Difusão , Glutationa/análogos & derivados , Humanos , Lipossomos , Octanóis , Água , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA