Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 7979, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562398

RESUMO

Banana is an important fruit crop in the tropics and subtropics; however, limited information on biomarkers and signature volatiles is available for selecting commercial cultivars. Clonal fidelity is a major contributor to banana yield and aroma; however, there are no useful biomarkers available to validate clonal fidelity. In this study, we performed the molecular profiling of 20 banana cultivars consisting of diploid (AA or AB) and triploid (AAA or AAB or ABB) genomic groups. We screened 200 molecular markers, of which 34 markers (11 RAPD, 11 ISSR, and 12 SSR) yielded unequivocally scorable biomarker profiles. About 75, 69, and 24 allelic loci per marker were detected for RAPD, ISSR, and SSR markers, respectively. The statistical analysis of molecular variance (AMOVA) exhibited a high genetic difference of 77% with a significant FST value of 0.23 (p < 0.001). Interestingly, the UBC-858 and SSR CNMPF-13 markers were unique to Grand Nain and Ardhapuri cultivars, respectively, which could be used for clonal fidelity analysis. Furthermore, the analysis of banana fruit volatilome using headspace solid-phase microextraction-gas chromatography-tandem mass spectrometry (HS-SPME-GCMS) revealed a total of fifty-four volatile compounds in nine banana cultivars with 56% of the total volatile compounds belonging to the ester group as the significant contributor of aroma. The study assumes significance with informative biomarkers and signature volatiles which could be helpful in breeding and for the authentic identification of commercial banana cultivars.


Assuntos
Musa , Compostos Orgânicos Voláteis , Biomarcadores , Cromatografia Gasosa-Espectrometria de Massas/métodos , Variação Genética , Musa/química , Musa/genética , Melhoramento Vegetal , Técnica de Amplificação ao Acaso de DNA Polimórfico , Compostos Orgânicos Voláteis/análise
2.
Curr Genomics ; 22(3): 214-231, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34975291

RESUMO

Food security is threatened by various biotic stresses that affect the growth and production of agricultural crops. Viral diseases have become a serious concern for crop plants as they incur huge yield losses. The enhancement of host resistance against plant viruses is a priority for the effective management of plant viral diseases. However, in the present context of the climate change scenario, plant viruses are rapidly evolving, resulting in the loss of the host resistance mechanism. Advances in genome editing techniques, such as CRISPR-Cas9 [clustered regularly interspaced palindromic repeats-CRISPR-associated 9], have been recognized as promising tools for the development of plant virus resistance. CRISPR-Cas9 genome editing tool is widely preferred due to high target specificity, simplicity, efficiency, and reproducibility. CRISPR-Cas9 based virus resistance in plants has been successfully achieved by gene targeting and cleaving the viral genome or altering the plant genome to enhance plant innate immunity. In this article, we have described the CRISPR-Cas9 system, mechanism of plant immunity against viruses and highlighted the use of the CRISPR-Cas9 system to engineer virus resistance in plants. We also discussed prospects and challenges on the use of CRISPR-Cas9-mediated plant virus resistance in crop improvement.

3.
Plant Physiol Biochem ; 131: 22-30, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29653762

RESUMO

Genome editing (GE) tools ensure targeted mutagenesis and sequence-specific modification in plants using a wide resource of customized endonucleases; namely, zinc-finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs), and the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated protein) system. Among these, in recent times CRISPR/Cas9 has been widely used in functional genomics and plant genetic modification. A significant concern in the application of GE tools is the occurrence of 'off-target' activity and induced mutations, which may impede functional analysis and gene activity studies. Moreover, the 'off-target' activity results in either not reported or unknown, difficult to detect, produce non-quantifiable cellular signaling and physiological effects. In the past few years, several experimental methods have been developed to identify undesired mutations and to curtail 'off-target' cleavage. Improvement in target specificity and minimizing 'off-target' activity will offer better applications of GE technology in plant biology and crop improvement.


Assuntos
Endonucleases/genética , Edição de Genes , Engenharia Genética/efeitos adversos , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Genoma de Planta/genética , Plantas/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética
4.
Anal Biochem ; 532: 60-63, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28602750

RESUMO

Substantial concerns have been raised for the safety of transgenics on human health and environment. Many organizations, consumer groups, and environmental agencies advocate for stringent regulations to avoid transgene products' contamination in food cycle or in nature. Here we demonstrate a novel approach using surface enhanced Raman spectroscopy (SERS) to detect and quantify transgene from GM plants. We show a highly sensitive and accurate quantification of transgene DNA from multiple transgenic lines of Arabidopsis. The assay allows us to detect and quantify the transgenes as low as 0.10 pg without need for PCR-amplification. This technology is relatively cheap, quick, simple, and suitable for detection at low target concentration.


Assuntos
Aminoácido Oxirredutases/genética , Arabidopsis/genética , DNA de Plantas/análise , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas/genética , Análise Espectral Raman/métodos , Transgenes/fisiologia , Agrobacterium tumefaciens/enzimologia , Arabidopsis/metabolismo , Bioensaio , Caulimovirus/genética , DNA de Plantas/genética , Plantas Geneticamente Modificadas/metabolismo , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA