Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Physiol Rep ; 10(22): e15509, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36426716

RESUMO

Methamphetamine is a commonly abused illicit stimulant that has prevalent use among women of child-bearing age. While there are extensive studies on the neurological effects of prenatal methamphetamine exposure, relatively little is known about the effect of prenatal methamphetamine on the adult cardiovascular system. Earlier work demonstrated that prenatal methamphetamine exposure sex dependently (females only) sensitizes the adult heart to ischemic injury. These data suggest that prenatal exposure to methamphetamine may induce sex-dependent changes in cardiac gene expression that persist in adult offspring. The goal of this study was to test the hypothesis that prenatal methamphetamine exposure induces changes in cardiac gene expression that persist in the adult heart. Hearts of prenatally exposed female offspring exhibited a greater number of changes in gene expression compared to male offspring (184 changes compared with 74 in male offspring and 89 changes common between both sexes). Dimethylarginine dimethylaminohydrolase 2 and 3-hydroxybutyrate dehydrogenase 1 (genes implicated in heart failure) were shown by Western Blot to be under expressed in adult females that were prenatally exposed to methamphetamine, while males were deficient in 3-Hydroxybutyrate Dehydrogenase 1 only. These data indicate that prenatal methamphetamine exposure induces changes in gene expression that persist into adulthood. This is consistent with previous findings that prenatal methamphetamine sex dependently sensitizes the adult heart to ischemic injury and may increase the risk of developing cardiac disorders during adulthood.


Assuntos
Filhos Adultos , Cardiopatias , Hidroxibutirato Desidrogenase , Metanfetamina , Efeitos Tardios da Exposição Pré-Natal , Adulto , Criança , Feminino , Humanos , Masculino , Gravidez , Expressão Gênica , Hidroxibutirato Desidrogenase/deficiência , Metanfetamina/efeitos adversos , Miocárdio , Fatores Sexuais , Efeitos Tardios da Exposição Pré-Natal/genética , Cardiopatias/genética
2.
Front Cardiovasc Med ; 9: 830983, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35155639

RESUMO

Methamphetamine use during pregnancy can have negative consequences on the offspring. However, most studies investigating the impact of prenatal exposure to methamphetamine have focused on behavioral and neurological outcomes. Relatively little is known regarding the impact of prenatal methamphetamine on the adult cardiovascular system. This study investigated the impact of chronic fetal exposure to methamphetamine on vascular function in adult offspring. Pregnant female rats received daily saline or methamphetamine (5 mg/kg) injections starting on gestational day 1 and continuing until the pups were born. Vascular function was assessed in 5 month old offspring. Prenatal methamphetamine significantly decreased both the efficacy and potency of acetylcholine-induced relaxation in isolated male (but not female) aortas when perivascular adipose tissue (PVAT) remained intact. However, prenatal methamphetamine had no impact on acetylcholine-induced relaxation when PVAT was removed. Nitroprusside-induced relaxation of the aorta was unaffected by prenatal methamphetamine. Angiotensin II-induced contractile responses were significantly potentiated in male (but not female) aortas regardless of the presence of PVAT. This effect was reversed by L-nitro arginine methyl ester (L-NAME). Serotonin- and phenylephrine-induced contraction were unaffected by prenatal methamphetamine. Prenatal methamphetamine had no impact on acetylcholine-induced relaxation of third order mesenteric arteries and no effect on basal blood pressure. These data provide evidence that prenatal exposure to methamphetamine sex-dependently alters vasomotor function in the vasculature and may increase the risk of developing vascular disorders later in adult life.

3.
Front Microbiol ; 13: 1092257, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36687633

RESUMO

Introduction: Intravenous vancomycin (VAN) is the primary treatment for systemic infections due to methicillin-resistant Staphylococcus aureus (MRSA). Pharmacokinetic/pharmacodynamic target (PK/PD) indices for VAN therapies are more difficult to achieve for MRSA isolates with a minimum inhibitory concentration (MIC) greater than 1 µg mL-1. This research investigated the in vitro antimicrobial PD interaction of disulfiram (DSF) with VAN as a potential adjuvant therapy for infections due to these bacteria. Methods: The antimicrobial interaction was assessed by differential analysis using checkerboard titration testing, time-kill studies, flow cytometry, and the post-antibiotic effect (PAE) experiment. Ten MRSA strains with MICs ranging from 1 to >256 µg mL-1 for VAN were evaluated. A comprehensive PD assessment of the VAN/DSF interaction was performed using the VAN-intermediate (VISA) strain Mu50 (MIC 8 µg mL-1). Results: The addition of DSF lowered the MIC and minimum bactericidal concentration (MBC) of VAN in either a synergistic or additive manner for the MRSA panel. Optimal bactericidal effects and suppression of VISA Mu50 growth were observed with a 4/8 µg mL-1 combination of VAN/DSF, but not the individual drugs. Flow cytometry further confirmed the enhanced killing action on a cellular level; however, the addition of DSF had an overall antagonistic effect on the PAEs for VAN. Discussion: This research established that DSF exhibits additive to synergistic killing action with VAN for MRSA. Conversely, antagonism was observed on the PAE of VAN with DSF addition for the Mu50 strain. Flow cytometry further confirmed the enhanced bactericidal effect on a cellular level while revealing that DSF may counteract the muropeptide fortification mechanism against VAN in VISA.

4.
BMC Genomics ; 22(1): 259, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33845768

RESUMO

BACKGROUND: Prior work demonstrated that female rats (but not their male littermates) exposed to methamphetamine become hypersensitive to myocardial ischemic injury. Importantly, this sex-dependent effect persists following 30 days of subsequent abstinence from the drug, suggesting that it may be mediated by long term changes in gene expression that are not rapidly reversed following discontinuation of methamphetamine use. The goal of the present study was to determine whether methamphetamine induces sex-dependent changes in myocardial gene expression and whether these changes persist following subsequent abstinence from methamphetamine. RESULTS: Methamphetamine induced changes in the myocardial transcriptome were significantly greater in female hearts than male hearts both in terms of the number of genes affected and the magnitude of the changes. The largest changes in female hearts involved genes that regulate the circadian clock (Dbp, Per3, Per2, BMal1, and Npas2) which are known to impact myocardial ischemic injury. These genes were unaffected by methamphetamine in male hearts. All changes in gene expression identified at day 11 returned to baseline by day 30. CONCLUSIONS: These data demonstrate that female rats are more sensitive than males to methamphetamine-induced changes in the myocardial transcriptome and that methamphetamine does not induce changes in myocardial transcription that persist long term after exposure to the drug has been discontinued.


Assuntos
Relógios Circadianos , Metanfetamina , Animais , Ritmo Circadiano , Feminino , Coração , Masculino , Miocárdio , Ratos , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA