Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 462: 141000, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39241686

RESUMO

Food waste, accounting for about one-third of the total global food resources wasted each year, is a substantial challenge to global sustainability, contributing to adverse environmental impacts. The utilization of food waste as a valuable source for bioactive extraction can be facilitated through the application of DES (Deep Eutectic Solvents). Acknowledging the significant need to tackle this issue, the United Nations integrated food waste management into its Sustainable Development Goals, hence, the present review explores the role of DES in bioactive compounds extraction from food waste. Various extraction processes using the DES system are thoroughly studied and the application of bioactive components as antioxidants, antimicrobials, flavourings, nutraceuticals, functional ingredients, additives, and preservatives is investigated. Most importantly, regulatory considerations and safety aspects of DES in food applications are discussed in-depth along with consumer perception and acceptance of DES in the food sector. The key hypothesis of the review is to evaluate emerging DES systems for their efficiency in bioactive extraction technologies and various food applications. Overall, this review provides a comprehensive understanding of utilizing DES for synthesizing valuable food waste-derived bioactive components, offering a sustainable approach to waste management and the development of high-value products.


Assuntos
Solventes Eutéticos Profundos , Desenvolvimento Sustentável , Solventes Eutéticos Profundos/química , Resíduos/análise , Gerenciamento de Resíduos/métodos , Humanos , Antioxidantes/química , Antioxidantes/isolamento & purificação , Perda e Desperdício de Alimentos
2.
Int J Biol Macromol ; 278(Pt 4): 135032, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39182880

RESUMO

Native lotus (Nelumbo nucifera G.) seed starch (LSS) was single- and dual-modified by heat-moisture treatment (HMT), ultrasonication (US), HMT followed by the US (HMT-US), and the US followed by HMT (US-HMT). The modified lotus seed starch (LSS) was evaluated for its physicochemical, pasting, thermal, and rheological properties and in vitro digestibility. All treatments decreased the swelling power (10.52-14.0 g/g), solubility (12.20-15.95 %), and amylose content (23.71-25.67 %) except for ultrasonication (17.67 g/g, 17.90 %, 29.09 %, respectively) when compared with native LSS (15.05 g/g, 16.12 %, 27.12 %, respectively). According to the rheological study, G' (1665-4004 Pa) was greater than G″ (119-308 Pa) for all LSS gel samples demonstrating their elastic character. Moreover, gelatinization enthalpy (17.56-16.05 J/g) increased in all treatments compared to native LSS (15.38 J/g). Ultrasonication treatment improved the thermal stability of LSS. The digestibility results showed that dual modification using HMT and US significantly enhanced resistant starch (RS) and reduced slowly digestible starch (SDS) in LSS. Cracks were observed on the surface of the modified LSS granules. Peak viscosity decreased in all modified starches except for ultrasonication, suggesting their resistance to shear-thinning during cooking, making them ideal weaning food components. The results obtained after different modifications in this study could be a useful ready reference to select appropriate modification treatments to produce modified LSS with desired properties depending on their end-use.


Assuntos
Reologia , Sementes , Amido , Amido/química , Sementes/química , Nelumbo/química , Solubilidade , Digestão , Amilose/química , Temperatura Alta , Viscosidade
3.
Food Chem ; 460(Pt 1): 140401, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39033640

RESUMO

The study evaluates the interaction between Calocybe indica mushroom polyphenols (phenolic acid) and kidney bean protein (KBPM), aiming to enhance vegan food quality. The mushrooms exhibited a carbohydrate content of 3.65%, an antioxidant activity of 55.04 ± 0.17%, and a phenolic content of 4.86 mg GAE/g. Caffeic and cinnamic acids were identified through high-pressure liquid chromatography. Various concentrations of KBPM were tested at phenolic acid concentrations of 0.025, 0.050, 0.1, 0.2, 0.4, 0.8, and 1%, among these, KBPM 0.2 demonstrated the highest binding efficiency of 99.40 ± 0.05%. Notably, this complex improved the protein's functional properties, such as solubility by 11.43%, water and oil holding capacities by 10.62% and 22.04%, and emulsion capacity and stability by 3.69% and 5.83%, respectively, compared to the native protein. The protein-phenolic acid complex also enhanced thermal stability, surface charge, amino acid content, and reduced particle size compared to native protein. These enhancements also improved protein digestibility and sensory attributes in a fruit-based smoothie.


Assuntos
Agaricales , Dieta Vegana , Phaseolus , Proteínas de Plantas , Agaricales/química , Hidroxibenzoatos/química , Phaseolus/química , Proteínas de Plantas/química , Emulsões , Aminoácidos/química , Ligação Proteica , Tamanho da Partícula , Interações Hidrofóbicas e Hidrofílicas , Solubilidade
4.
Food Sci Nutr ; 12(7): 5188-5200, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39055197

RESUMO

This research was aimed to investigate the utilization of mung bean starch as an innovative edible coating material to enhance the shelf-life of cut papaya fruits. The study focused on the extraction process of mung bean starch and its subsequent characterization through various analyses. Particle size (142.3 ± 1.24 nm), zeta potential (-25.52 ± 1.02 mV), morphological images, Fourier transform infrared (FTIR) spectra, and thermal stability (68.36 ± 0.15°C) were assessed to determine the mung bean starch properties. The functional properties, such as bulk density (0.51 ± 0.004 g/cm3) and tapped density (0.62 ± 0.010 g/cm3), angle of repose (21.61°), swelling power (12.26 ± 0.25%), and minimum gelation concentration (4.01 ± 1.25%), were examined to detect its potential as a coating base material. Subsequently, the prepared mung bean starch coating solution (1%, 2%, 3%, 4%, and 5%) was applied to papaya fruits and the coated fruits' physicochemical characteristics evaluated during storage. These characteristics encompassed color, weight loss, pH shifts, total soluble solids, titratable acidity, vitamin C content, fruit firmness, microbial analysis, and sensory attributes. The results revealed that starch coating on papaya maintained its color, reduced weight loss, preserved vitamin C, and delayed firmness loss, enhancing shelf-life when compared to control sample. These findings demonstrated the effectiveness of mung bean starch coatings in preserving papaya fruits. The research made a significant contribution to the use of mung bean starch as a potential coating material for improving the shelf-life of papaya fruits. This finding has great promise for the field of food preservation and quality control.

5.
J Sci Food Agric ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39077990

RESUMO

Papain a protease enzyme naturally present in the Carica papaya has gained significant interest across several industries due to its unique properties and versatility. The unique structure of papain imparts the functionality that assists in elucidating how papain enzyme works and making it beneficial for a variety of purposes. This review highlights recent advancements in papain extraction techniques to enhance production efficiency to meet market demand. The extraction of papain from the Carica papaya plant offers various advantages such as cost-effectiveness, biodegradability, safety, and the ability to withstand a wide range of pH and temperature conditions. Key findings reveal that non-conventional papain extraction techniques offer significant advantages in terms of efficiency, product quality, and environmental sustainability. Furthermore, papain treatment enhances the value of final products due to its anti-bacterial, anti-oxidant, and anti-obesity properties. The ability of papain to hydrolyze a wide range of proteins across various conditions makes it a suitable protease enzyme. While the study emphasizes the advantages of papain, the study also acknowledges limitations such as the continuous research and development to optimize extraction processes which will help unlock papain's potential and meet the growing demand. © 2024 Society of Chemical Industry.

6.
Int J Biol Macromol ; 277(Pt 2): 134170, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39067731

RESUMO

Agricultural waste presents a significant environmental challenge due to improper disposal and management practices, contributing to soil degradation, biodiversity loss, and pollution of water and air resources. To address these issues, there is a growing emphasis on the valorization of agricultural waste. Cellulose, a major component of agricultural waste, offers promising opportunities for resource utilization due to its unique properties, including biodegradability, biocompatibility, and renewability. Thus, this review explored various types of agricultural waste, their chemical composition, and pretreatment methods for cellulose extraction. It also highlights the significance of rice straw, sugarcane bagasse, and other agricultural residues as cellulose-rich resources. Among the various membrane fabrication techniques, phase inversion is highly effective for creating porous membranes with controlled thickness and uniformity, while electrospinning produces nanofibrous membranes with high surface area and exceptional mechanical properties. The review further explores the separation of pollutants including using cellulose membranes, demonstrating their potential in environmental remediation. Hence, by valorizing agricultural residues into functional materials, this approach addresses the challenge of agricultural waste management and contributes to the development of innovative solutions for pollution control and water treatment.


Assuntos
Agricultura , Celulose , Membranas Artificiais , Celulose/química , Agricultura/métodos , Biodegradação Ambiental , Poluentes Ambientais/química , Poluentes Ambientais/isolamento & purificação
7.
Clin Nutr ESPEN ; 62: 10-21, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901929

RESUMO

Vitamin D is amongst the most important biomolecules to regularize and help in sustainable health, however, based on the studies, deficiency of this multifunctional vitamin is common. Vitamin D, besides playing a role in the form of vitamins, also acts as a multifunctional hormone (steroid). Vitamin D is synthesized inside the body through various steps starting from ultraviolet radiation exposure and comes from limited food sources, however, vitamin D-fortified food products are still among the major sources of vitamin D. Current review, focused on how vitamin D acts as a multifunctional molecule by effecting different functions in the body in normal or specific conditions and how it is important in fortification and how it can be managed from the available literature till date. During the Covid pandemic, people were aware of vitamin D and took supplementation, fortified foods, and sat under sunlight. As COVID prevalence decreases, people start forgetting about vitamin D. Vitamin D is very crucial for overall well-being as it has protective effects against a broad range of diseases as it can reduce inflammation, cancer cell growth and helps in controlling infection, increase metabolism, muscle, and bone strength, neurotransmitter expression, etc. Therefore, the present review is to provoke the population, and fulfillment of the vitamin D recommended dietary allowance daily must be confirmed.


Assuntos
COVID-19 , SARS-CoV-2 , Deficiência de Vitamina D , Vitamina D , Humanos , Vitamina D/uso terapêutico , Vitamina D/administração & dosagem , Suplementos Nutricionais , Alimentos Fortificados , Vitaminas , Recomendações Nutricionais , Pandemias
8.
Food Sci Nutr ; 12(6): 3920-3934, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38873482

RESUMO

Lecithin is constituted of a glycerophospholipid mixture and is abundantly used as an emulsifying agent in various food applications including chocolate production. However, overconsumption of lecithin may create an adverse effect on human health. Thus, this study aims to replace the lecithin with plant-based gums. Different ratios of guar and arabic gum (25%-75%) and their blend (25%-75%) were employed as partial replacement of lecithin. Milk chocolate prepared using 40% guar gum (60GGL [guar gum, lecithin]), 25% arabic gum (75AGL [arabic gum, lecithin]), and a blend of 15 arabic gum and 10 guar gum (65AGGL [arabic gum, guar gum, lecithin]) showed similar rheological behavior as compared to control chocolate (100% lecithin). The fat content of 65AGGL (37.85%) was significantly lower than that of the control sample (43.37%). Rheological behavior exhibited shear-thinning behavior and samples (60GGL-75GGL-80GGL, 65AGL-75AGL, and 65AGGL-75AGGL) showed similar rheological properties as compared to control. The chocolate samples (60GGL and 65AGGL) showed significantly (p < .05) higher hardness values (86.01 and 83.55 N) than the control (79.95 N). As well, gum-added chocolates exhibited higher thermal stability up to 660°C as compared to the control sample. The Fourier transform infrared spectroscopy (FTIR) analysis revealed predominant ß-(1 → 4) and ß-(1 → 6) glycosidic linkages of the gums and lecithin. Sensory evaluation revealed a comparable score of gum-added milk chocolate in comparison to control samples in terms of taste, texture, color, and overall acceptance. Thus, plant exudate gums could be an excellent alternative to lecithin in milk chocolate, which can enhance the textural properties and shelf life.

9.
Foods ; 13(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38890965

RESUMO

This study aims to focus on developing a food supplement for the geriatric population using disposal mushrooms, oats, and lactose-free milk powder. Lactose intolerance is most common in older adults, raising the demand for lactose-free foods. One of the major global challenges currently faced by humankind is food waste (FW). Most of the food that is produced for human consumption has not been utilized completely (1/3rd-1/2 unutilized), resulting in agricultural food waste. Mushrooms are highly valuable in terms of their nutritional value and medicinal properties; however, a significant percentage of mushroom leftovers are produced during mushroom production that do not meet retailers' standards (deformation of caps/stalks) and are left unattended. Oats are rich in dietary fibre beta-glucan (55% water soluble; 45% water insoluble). Lactose-free milk powder, oats, and dried mushroom leftover powder were blended in different ratios. It was observed that increasing the amount of mushroom leftover powder increases the protein content while diluting calories. The product with 15% mushroom powder and 30% oat powder showed the highest sensory scores and the lowest microbial count. The GCMS and FTIR analyses confirmed the presence of ergosterol and other functional groups. The results of the XRD analysis showed that the product with 15% mushroom powder and 30% oat powder had a less crystalline structure than the product with 5% mushroom powder and 40% oat powder and the product with 10% mushroom powder and 35% oat powder, resulting in more solubility. The ICP-OES analysis showed significant concentrations of calcium, potassium, magnesium, sodium, and zinc. The coliform count was nil for the products, and the bacterial count was below the limited range (3 × 102 cfu/g). The product with 15% mushroom powder and 30% oat powder showed the best results, so this developed product is recommended for older adults.

10.
Int J Biol Macromol ; 273(Pt 2): 132915, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38844289

RESUMO

Non-conventional starch sources have attracted substantial attention due to their preferred physicochemical and mechanical properties similar to conventional sources. This study aimed to enhance the mechanical properties of mango seed kernel starch (MSKS) based films reinforced with carboxymethyl cellulose (CMC) and gum acacia (GA). Physical modification of MSKS was carried out using microwave-assisted at 180 W for 1 min. SEM results confirmed the oval and irregular shape of starch. The particle size of native starch (NS) (754.9 ± 20.4 nm) was higher compared to modified starch (MS) 336.6 ± 88.9 nm with a surface charge of -24.80 ± 3.92 to -34.87 ± 3.92 mV, respectively. Several functional groups including hydroxyl (OH) and carboxyl (CH) were confirmed in NS and MS. Different ratios of the MS, NS, CMC, and GA were used for the fabrication of films. Results revealed the higher tensile strength of M/C/G-1 (57.45 ± 0.05 nm) and M/C/G-2 (50.77 ± 0.58), compared to control C-4 (100 % native starch) (4.82 ± 0.04) respectively. The ternary complex provided excellent permeability against moisture and the film with a higher starch concentration confirmed the uniform thickness (0.09-0.10 mm). Furthermore, selected films (M/C/G-1 and M/C/G-2) reduced the microbial growth and weight loss of the bun compared to the control (C-4) film. Thus, the ternary complex maintained the freshness of the bun-bread for 14 days. It can be potentially used as a cost-effective and eco-friendly packaging material for food applications.


Assuntos
Carboximetilcelulose Sódica , Goma Arábica , Mangifera , Sementes , Amido , Carboximetilcelulose Sódica/química , Amido/química , Goma Arábica/química , Mangifera/química , Sementes/química , Resistência à Tração , Embalagem de Alimentos/métodos
11.
Carbohydr Polym ; 339: 122228, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823903

RESUMO

Meat products consumption is rising globally, but concerns about sustainability, fat content, and shelf life. Synthetic additives and preservatives used for extending the shelf life of meat often carry health and environmental drawbacks. Seed mucilage, natural polysaccharides, possesses unique functional properties like water holding, emulsifying, and film forming, offering potential alternatives in meat processing and preservation. This study explores the application of seed mucilage from diverse sources (e.g., flaxseed, psyllium, basil) in various meat and meat products processing and preservation. Mucilage's water-holding and emulsifying properties can potentially bind fat and decrease the overall lipid content in meat and meat-based products. Moreover, antimicrobial and film-forming properties of mucilage can potentially inhibit microbial growth and reduce oxidation, extending the shelf life. This review emphasizes the advantages of incorporating mucilage into processing and coating strategies for meat and seafood products.


Assuntos
Conservação de Alimentos , Produtos da Carne , Mucilagem Vegetal , Sementes , Sementes/química , Produtos da Carne/análise , Mucilagem Vegetal/química , Conservação de Alimentos/métodos , Linho/química , Biopolímeros/química , Polissacarídeos/química , Animais , Psyllium/química , Manipulação de Alimentos/métodos
12.
Food Sci Nutr ; 12(5): 3150-3163, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726405

RESUMO

Polysaccharides from non-conventional sources, such as fruits, have gained significant attention recently. Aegle marmelos (Bael), a non-conventional fruit, is an excellent source of biologically active components with potential indigenous therapeutic and food applications. Apart from polyphenolic components, this is an excellent source of mucilaginous polysaccharides. Polysaccharides are one the major components of bael fruit, having a high amount of galactose and glucuronic acid, which contributes to its potential therapeutic properties. Therefore, this review emphasizes the conventional and emerging techniques of polysaccharide extraction from bael fruit. Insight into the attributes of polysaccharide components, their techno-functional properties, characterization of bael fruit polysaccharide, emulsifying properties, binding properties, reduction of hazardous dyes, application of polysaccharides in film formation, application of polysaccharide as a nanocomposite, and biological activities of bael fruit polysaccharides are discussed. This review also systematically overviews the relationship between extraction techniques, structural characteristics, and biological activities. Additionally, recommendations, future perspectives, and new valuable insight towards better utilization of bael fruit polysaccharide have been given importance, which can be promoted in the long term.

13.
Int J Biol Macromol ; 271(Pt 2): 132688, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38806080

RESUMO

Gums are high-molecular-weight compounds with hydrophobic or hydrophilic characteristics, which are mainly comprised of complex carbohydrates called polysaccharides, often associated with proteins and minerals. Various innovative modification techniques are utilized, including ultrasound-assisted and microwave-assisted techniques, enzymatic alterations, electrospinning, irradiation, and amalgamation process. These methods advance the process, reducing processing times and energy consumption while maintaining the quality of the modified gums. Enzymes like xanthan lyases, xanthanase, and cellulase can selectively modify exudate gums, altering their structure to enhance their properties. This precise enzymatic approach allows for the use of exudate gums for specific applications. Exudate gums have been employed in nanotechnology applications through techniques like electrospinning. This enables the production of nanoparticles and nanofibers with improved properties, making them suitable for the drug delivery system, tissue engineering, active and intelligient food packaging. The resulting modified exudate gums exhibit improved rheological, emulsifying, gelling, and other functional properties, which expand their potential applications. This paper discusses novel applications of these modified gums in the pharmaceutical, food, and industrial sectors. The ever-evolving field presents diverse opportunities for sustainable innovation across these sectors.


Assuntos
Gomas Vegetais , Gomas Vegetais/química , Sistemas de Liberação de Medicamentos , Humanos
14.
Food Res Int ; 186: 114344, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729696

RESUMO

The research aimed to evaluate the effect of ultrasonication and succinylation on the functional, iron binding, physiochemical, and cellular mineral uptake efficacy of chickpea protein concentrate. Succinylation resulted in significant improvements in the water-holding capacity (WHC) (25.47 %), oil-holding capacity (OHC) (31.38 %), and solubility (5.80 %) of the chickpea protein-iron complex. Mineral bioavailability significantly increased by 4.41 %, and there was a significant increase in cellular mineral uptake (64.64 %), retention (36.68 %), and transport (27.96 %). The ferritin content of the succinylated chickpea protein-iron complex showed a substantial increase of 66.31%. Furthermore, the dual modification approach combining ultrasonication and succinylation reduced the particle size of the protein-iron complex with a substantial reduction of 83.25 %. It also resulted in a significant enhancement of 51.5 % in the SH (sulfhydryl) content and 48.92 % in the surface hydrophobicity. Mineral bioavailability and cellular mineral uptake, retention, and transport were further enhanced through dual modification. In terms of application, the addition of single and dual-modified chickpea protein-iron complex to a fruit-based smoothie demonstrated positive acceptance in sensory attributes. Overall, the combined approach of succinylation and ultrasonication to the chickpea protein-iron complex shows a promising strategy for enhancing the physiochemical and techno-functional characteristics, cellular mineral uptake, and the development of vegan food products.


Assuntos
Disponibilidade Biológica , Cicer , Ferro , Cicer/química , Ferro/química , Ferro/metabolismo , Humanos , Alimentos Fortificados , Proteínas de Plantas/química , Digestão , Minerais/química , Células CACO-2 , Ácido Succínico/química , Tamanho da Partícula , Manipulação de Alimentos/métodos , Solubilidade , Ferritinas/química , Ferritinas/metabolismo
15.
Foods ; 13(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38731769

RESUMO

Plant-based proteins have gained popularity in the food industry as a good protein source. Among these, chickpea protein has gained significant attention in recent times due to its high yields, high nutritional content, and health benefits. With an abundance of essential amino acids, particularly lysine, and a highly digestible indispensable amino acid score of 76 (DIAAS), chickpea protein is considered a substitute for animal proteins. However, the application of chickpea protein in food products is limited due to its poor functional properties, such as solubility, water-holding capacity, and emulsifying and gelling properties. To overcome these limitations, various modification methods, including physical, biological, chemical, and a combination of these, have been applied to enhance the functional properties of chickpea protein and expand its applications in healthy food products. Therefore, this review aims to comprehensively examine recent advances in Cicer arietinum (chickpea) protein extraction techniques, characterizing its properties, exploring post-modification strategies, and assessing its diverse applications in the food industry. Moreover, we reviewed the nutritional benefits and sustainability implications, along with addressing regulatory considerations. This review intends to provide insights into maximizing the potential of Cicer arietinum protein in diverse applications while ensuring sustainability and compliance with regulations.

16.
Int J Biol Macromol ; 268(Pt 1): 131687, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642692

RESUMO

In future, global demand for low-cost-sustainable materials possessing good strength is going to increase tremendously, to replace synthetic plastic materials, thus motivating scientists towards green composites. The PLA has been the most promising sustainable bio composites, due to its inherent antibacterial property, biodegradability, eco-friendliness, and good thermal and mechanical characteristics. However, PLA has certain demerits such as poor water and gas barrier properties, and low glass transition temperature, which restricts its use in food packaging applications. To overcome this, PLA is blended with polysaccharides such as gum and cellulose to enhance the water barrier, thermal, crystallization, degradability, and mechanical properties. Moreover, the addition of these polysaccharides not only reduces the production cost but also helps in manufacturing packaging material with superior quality. Hence this review focuses on various fabrication techniques, degradation of the ternary composite, and its application in the food sector. Moreover, this review discusses the enhanced barrier and mechanical properties of the ternary blend packaging material. Incorporation of gum enhanced flexibility, while the reinforcement of cellulose improved the structural integrity of the ternary composite. The unique properties of this ternary composite make it suitable for extending the shelf life of food packaging, specifically for fruits, vegetables, and fried products. Future studies must be conducted to investigate the optimization of formulations for specific food types, explore scalability for industrial applications, and integrate these composites with emerging technologies (3D/4D printing).


Assuntos
Celulose , Embalagem de Alimentos , Poliésteres , Embalagem de Alimentos/métodos , Celulose/química , Poliésteres/química , Gomas Vegetais/química
17.
Int J Biol Macromol ; 267(Pt 1): 131431, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593896

RESUMO

In recent years, there increment demand for healthier food options that can replace high-fat ingredients in bakery products without compromising their taste and texture. This research was focused on a formulation study of the blend of nano polysaccharides derived from aloe vera and guar gum at various concentrations. This study selected the blend concentration of 1 % aloe vera mucilage (AM) and 1 % guar gum (GG) due to its optimal gelling properties. Different magnetic stirring time durations were employed to formulate AGB (aloe vera guar gum blend). The particle size of AGB revealed the lowest nanoparticle size (761.03 ± 62 nm) with a stirring time of 4 h. The FTIR analysis found the presence of monomer sugars in AGB nano polysaccharide powder such as mannose, arabinose, and glucose. The thermogram results displayed an endothermic peak for all samples with a glass transition temperature (Tg) between 16 and 50 °C. The SEM image of the AGB indicated uniform spherical particles. The AGB powder exhibited good functional properties. The antimicrobial activity of AGB powder against Staphylococcus aureus, Escherichia coli, and Candida albicans was 22.32 ± 0.02, 21.56 ± 0.02, and 19.33 ± 0.33 mm, respectively. Furthermore, the effects of different levels of vegetable fat replacement with AGB powder on cake sensory properties, thermal stability, and texture characteristics were also examined. Notably, the cake containing a 50 % substitution of vegetable fat with AGB (C50) supplied desirable physicochemical, textural, and sensory properties. These results can provide advantages for the development of fat replacers in bakery products.


Assuntos
Aloe , Galactanos , Mananas , Gomas Vegetais , Polissacarídeos , Galactanos/química , Mananas/química , Mananas/farmacologia , Gomas Vegetais/química , Aloe/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Substitutos da Gordura/química , Candida albicans/efeitos dos fármacos , Tamanho da Partícula , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Staphylococcus aureus/efeitos dos fármacos , Nanopartículas/química
19.
Gels ; 10(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38391425

RESUMO

Taro mucilage is a cost-effective, eco-friendly, and water-soluble edible viscous polysaccharide, which possesses diverse techno-functional properties including gelling and anti-microbial. Therefore, the objective of this study was to formulate and evaluate the efficacy of taro mucilage nanohydrogel for the shelf-life enhancement of fresh-cut apples. Taro mucilage was extracted using cold water extraction, and the yield of mucilage was found to be 2.95 ± 0.35% on a dry basis. Different concentrations of mucilage (1, 2, 3, 4, and 5%) were used to formulate the nanohydrogel. A smaller droplet size of 175.61 ± 0.92 nm was observed at 3% mucilage, with a zeta potential of -30.25 ± 0.94 mV. Moreover, FTIR data of nanohydrogel revealed the functional groups of various sugars, uronic acids, and proteins. Thermal analysis of nanohydrogel exhibited weight loss in three phases, and maximum weight loss occurred from 110.25 °C to 324.27 °C (65.16%). Nanohydrogel showed shear-thinning fluid or pseudo-plastic behavior. Coating treatment of nanohydrogel significantly reduced the weight loss of fresh-cut apples (8.72 ± 0.46%) as compared to the control sample (12.25 ± 0.78%) on the 10th day. In addition, minor changes were observed in the pH for both samples during the 10 days of storage. Titrable acidity of control fresh-cut apples measured 0.22 ± 0.05% on day 0, rising to 0.42 ± 0.03% on the 10th day, and for coated fresh-cut apples, it was observed to be 0.24 ± 0.07% on the 0th day and 0.36 ± 0.06% on 10th day, respectively. Furthermore, the total soluble solids (TSS) content of both control and coated fresh-cut apples measured on the 0th day was 11.85 ± 0.65% and 12.33 ± 0.92%, respectively. On the 10th day, these values were significantly increased (p < 0.05) to 16.38 ± 0.42% for the control and 14.26 ± 0.39% for the coated sliced apples, respectively. Nanohydrogel-coated fresh-cut apples retained antioxidant activity and vitamin C content as compared to the control sample. Taro mucilage nanohydrogel-based edible coating showed distinct anti-microbial activity against psychrotrophic, aerobic, and yeast molds. In summary, taro mucilage nanohydrogel can be used as a cost-effective natural coating material for the shelf-life enhancement or freshness maintenance of fresh-cut apples.

20.
Food Chem ; 445: 138671, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367556

RESUMO

Chickpea protein, a valuable plant-based source, offers versatile applications, yet the impact of modifications like succinylation and ultrasonication on its properties remains unclear. This study explored dual succinylation and ultrasonication modification to enhance its functionality and application. Modified chickpea protein with a degree of succinylation of 96.75 %, showed enhanced water holding capacity 39.83 %, oil holding capacity 54.02 %, solubility 7.20 %, and emulsifying capacity 23.17 %, compared to native protein. Despite reduced amino acid content (64.50 %), particularly lysine, succinylation increased sulfhydryl by 1.74 %, reducing hydrophobicity (Ho) by 41.87 % and causing structural changes. Ultrasonication further reduced particle size by 82.57 % and increased zeta potential and amino acid content (57.47 %). The dual-modified protein exhibited a non-significant increase in antimicrobial activity against Staphylococcus aureus (25.93 ± 1.36 mm) compared to the native protein (25.28 ± 1.05 mm). In conclusion, succinylation combined with ultrasonication offers a promising strategy to enhance chickpea protein's physicochemical properties for diverse applications.


Assuntos
Aminoácidos , Cicer , Aminoácidos/metabolismo , Cicer/química , Proteínas/metabolismo , Solubilidade , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA