Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Commun Signal ; 21(1): 220, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620860

RESUMO

The calcium-responsive phosphatase, calcineurin, senses changes in Ca2+ concentrations in a calmodulin-dependent manner. Here we report that under non-stress conditions, inactivation of calcineurin signaling or deleting the calcineurin-dependent transcription factor CRZ1 triggered the formation of chaperone Hsp100p (Hsp104p)-associated protein aggregates in Saccharomyces cerevisiae. Furthermore, calcineurin inactivation aggravated α-Synuclein-related cytotoxicity. Conversely, elevated production of the calcineurin activator, Cnb1p, suppressed protein aggregation and cytotoxicity associated with the familial Parkinson's disease-related mutant α-Synuclein A53T in a partly CRZ1-dependent manner. Activation of calcineurin boosted normal localization of both wild type and mutant α-synuclein to the plasma membrane, an intervention previously shown to mitigate α-synuclein toxicity in Parkinson's disease models. The findings demonstrate that calcineurin signaling, and Ca2+ influx to the vacuole, limit protein quality control in non-stressed cells and may have implications for elucidating to which extent aberrant calcineurin signaling contributes to the progression of Parkinson's disease(s) and other synucleinopathies. Video Abstract.


Assuntos
Doença de Parkinson , Proteínas de Saccharomyces cerevisiae , Sinucleinopatias , Humanos , alfa-Sinucleína , Agregados Proteicos , Calcineurina , Saccharomyces cerevisiae , Proteínas de Ligação a DNA , Fatores de Transcrição
2.
FEBS J ; 290(19): 4744-4761, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37306264

RESUMO

The small heat shock protein Hsp42 and the t-SNARE protein Sed5 have central roles in the sequestration of misfolded proteins into insoluble protein deposits in the yeast Saccharomyces cerevisiae. However, whether these proteins/processes interact in protein quality control (PQC) is not known. Here, we show that Sed5 and anterograde trafficking modulate phosphorylation of Hsp42 partially via the MAPK kinase Hog1. Such phosphorylation, specifically at residue S215, abrogated the co-localization of Hsp42 with the Hsp104 disaggregase, aggregate clearance, chaperone activity, and sequestration of aggregates to IPOD and mitochondria. Furthermore, we found that Hsp42 is hyperphosphorylated in old cells leading to a drastic failure in disaggregation. Old cells also displayed a retarded anterograde trafficking, which, together with slow aggregate clearance and hyperphosphorylation of Hsp42, could be counteracted by Sed5 overproduction. We hypothesize that the breakdown of proper PQC during yeast aging may, in part, be due to a retarded anterograde trafficking leading to hyperphosphorylation of Hsp42.


Assuntos
Proteínas de Choque Térmico Pequenas , Proteínas de Saccharomyces cerevisiae , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico Pequenas/genética , Proteínas de Choque Térmico Pequenas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Fosforilação , Agregados Proteicos , Proteínas Qa-SNARE/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Gene ; 606: 1-9, 2017 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-28027965

RESUMO

The highly conserved family of Phosphoprotein phosphatases (PPP) regulates several major physiological processes in yeast. However, very little is known about the PPP orthologs from the yeast species inhabiting extreme environmental niches. In the present study we have identified DhSIT4, a member of PPP6 class of serine threonine phosphatases from the halotolerant yeast Debaryomyces hansenii. Deletion of DhSIT4 in D. hansenii was not lethal but the mutant exhibited reduced growth due to its effect on the cell cycle. The knock out mutant Dhsit4Δ showed sensitivity towards Li+, Na+ and cell wall damaging agents. The expression of DhSit4p rescued salt, caffeine and calcofluor white sensitivity of Dhmpk1Δ strain and thereby indicating a genetic interaction of this phosphatase with the cell wall integrity pathway in this species. Our study also demonstrated the antagonistic roles of DhSit4p and DhPpz1p in maintaining the cell cycle and ion homeostasis in D. hansenii.


Assuntos
Proteínas Fúngicas/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/citologia , Saccharomycetales/enzimologia , Ciclo Celular , Parede Celular/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Saccharomycetales/classificação , Saccharomycetales/fisiologia
4.
Gene ; 577(2): 251-7, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26657037

RESUMO

Nik1 orthologs or group III hybrid histidine kinases (HHK) are ubiquitous signaling molecules in fungal pathogens. Besides osmosensing, they are also involved in hyphal morphogenesis, virulence, and conidiation. They are important molecular targets for antifungal agents. Nik1 orthologs contain a varying number of HAMP domain repeats (poly-HAMP) in the N-terminal region. Poly-HAMP plays a crucial role in their function. So far, the role of HAMP domains in their function has been studied only in a few Nik1 orthologs. In this paper, we describe the functional characterization of a Nik1 ortholog (ClNik1p) from Candida lusitaniae, an emerging and important fungal pathogen. We show that ClNik1p acts as a bona fide osmosensor and negatively regulates the downstream HOG pathway in Saccharomyces cerevisiae. Our data suggests a differential role of the HAMP domains in the functionality of ClNik1p. The HAMP domains H1, H2, H3 and H5 are essential for kinase activity, and H4 domain has a regulatory role. Among the HAMP like linker domains, only H4b was crucial for the activity of ClNik1p.


Assuntos
Candida/genética , Proteínas Fúngicas/genética , Proteínas Serina-Treonina Quinases/genética , Candida/enzimologia , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Osmorregulação , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA