Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (201)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38078604

RESUMO

The egg parasitoids, Trichogramma spp, are recognized as efficient biological control agents against various lepidopteran pests in agriculture and forests. The immature stages of Trichogramma offspring develop within the host egg, exhibiting remarkable diminutiveness (approximately 0.5 mm in adult length). RNA-interference (RNAi) methodology has emerged as a crucial tool for elucidating gene functions in numerous organisms. However, manipulating RNAi in certain small parasitoid species, such as Trichogramma, has generally posed significant challenges. In this study, we present an efficient RNAi method in Trichogramma denrolimi. The outlined procedure encompasses the acquisition and isolation of individual T. dendrolimi specimens from host eggs, the design and synthesis of double-stranded RNA (dsRNA), the in vitro transplantation and cultivation of T. dendrolimi pupae, the micro-injection of dsRNA, and the subsequent assessment of target gene knockdown through RT-qPCR analysis. This study furnishes a comprehensive, visually detailed procedure for conducting RNAi experiments in T. dendrolimi, thereby enabling researchers to investigate the gene regulation in this species. Furthermore, this methodology is adaptable for RNAi studies or micro-injections in other Trichogramma species with minor adjustments, rendering it a valuable reference for conducting RNAi experiments in other endoparasitic species.


Assuntos
Himenópteros , Mariposas , Parasitos , Vespas , Animais , Interferência de RNA , Himenópteros/fisiologia , Agricultura , Vespas/genética
2.
Front Physiol ; 14: 1243753, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37693004

RESUMO

Introduction: Trichogramma wasps are egg parasitoids of agricultural lepidopteran pests. The sex of Trichogramma is determined by its ploidy as well as certain sex ratio distorters, such as the endosymbiotic bacteria Wolbachia spp. and the paternal sex ratio (PSR) chromosome. The sex determination systems of hymenopterans, such as Trichogramma spp., involve cascades of the genes transformer (tra), transformer-2 (tra2), and doublesex (dsx) and are associated with sex-specific tra and dsx splicing. First, these genes and their sex-specific variants must be identified to elucidate the interactions between the sex ratio disorders and the sex determination mechanism of Trichogramma. Methods: Here, we characterized the sex determination genes tra, tra2, and dsx in Trichogramma dendrolimi. Sex-specific tra and dsx variants were detected in cDNA samples obtained from both male and female Trichogramma wasps. They were observed in the early embryos (1-10 h), late embryos (12-20 h), larvae (32 h and 48 h), pre-pupae (96 h), and pupae (144 h, 168 h, 192 h, and 216 h) of both male and female T. dendrolimi offspring. Results: We detected female-specific tra variants throughout the entire early female offspring stage. The male-specific variant began to express at 9-10 h as the egg was not fertilized. However, we did not find any maternally derived, female-specific tra variant in the early male embryo. This observation suggests that the female-specific tra variant expressed in the female embryo at 1-9 h may not have originated from the maternal female wasp. Discussion: The present study might be the first to identify the sex determination genes and sex-specific gene splicing in Trichogramma wasps. The findings of this study lay the foundation for investigating the sex determination mechanisms of Trichogramma and other wasps. They also facilitate sex identification in immature T. dendrolimi and the application of this important egg parasitoid in biological insect pest control programs.

3.
Front Cell Infect Microbiol ; 13: 1198428, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424778

RESUMO

Introduction: The bacterial endosymbiont, Wolbachia spp. induce thelytokous parthenogenesis in certain parasitoid wasps, such as the egg parasitoid wasps Trichogramma spp. To complete the cycle of vertical transmission, Wolbachia displays efficient transovarial transmission by targeting the reproductive tissues and often exhibits strong tissue-specific tropism in their host. Method: The present study aimed to describe the basic Wolbachia distribution patterns that occur during the development of Wolbachia-infected, thelytokous Trichogramma dendrolimi, and T. pretiosum. We used fluorescence in situ hybridization (FISH) to investigate Wolbachia signal dynamics during early embryogenesis (from 30 to 120 min). Wolbachia titers and distributions from the embryo to adult stages of Trichogramma after early embryogenesis were detected by absolute quantitative polymerase chain reaction (AQ-PCR) and FISH. The symmetry ratios (SR) of the Wolbachia signals were calculated using the SR odds ratios in the anterior and posterior parts of the host. The SR was determined to describe Wolbachia tropism during early embryogenesis and various developmental stages of Trichogramma. Results: Wolbachia was concentrated in the posterior part of the embryo during early embryogenesis and the various developmental stages of both T. dendrolimi and T. pretiosum. Wolbachia density increased with the number of nuclei and the initial mitotic division frequency during early embryogenesis. The total Wolbachia titer increased with postembryogenesis development in both T. dendrolimi and T. pretiosum. However, the Wolbachia densities relative to body size were significantly lower at the adult and pupal stages than they were at the embryonic stage. Discussion: The present work revealed that posterior Wolbachia concentration during early host embryogenesis determined Wolbachia localization in adult wasps. By this mechanism, Wolbachia exhibits efficient vertical transmission across generations by depositing only female Wolbachia-infected offspring. The results of this study describe the dynamics of Wolbachia during the development of their Trichogramma host. The findings of this investigation helped clarify Wolbachia tropism in Trichogramma wasps.


Assuntos
Vespas , Wolbachia , Animais , Feminino , Vespas/microbiologia , Wolbachia/genética , Hibridização in Situ Fluorescente , Desenvolvimento Embrionário , Partenogênese
4.
Pest Manag Sci ; 76(8): 2635-2644, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32112519

RESUMO

BACKGROUND: Trichogramma dendrolimi has been widely used in augmentative biocontrol of lepidopteran pests in China. In mass production of T. dendrolimi using Antheraea pernyi eggs as substitutive hosts, which are large in size, as clutch size is a parameter of importance to produce high quality parasitoids. Here, we aimed to determine the optimal clutch size for the bisexual Wolbachia-uninfected line (TdB) and Wolbachia-infected thelytokous line (TdT) of T. dendrolimi reared on A. pernyi eggs. RESULTS: A medium clutch size of 42.75 to 62.27 for TdB and 52.93 to 57.14 for TdT was optimal to maximize fitness-correlated traits of parasitoid individual. The optimal clutch sizes with maximized parameters included adult emergence rate, adult body size, adult longevity, fecundity, and sum of fecundity of all females per brood were 58.31 (86.00%), 42.75 (231.11 µm), 50.92 (2.69 days), 62.27 (150.89 eggs), and 83.25 (7926.33 eggs) for TdB and 57.14 (94.54%), 52.93 (236.97 µm), 53.64 (2.62 days), 56.80 (161.01 eggs), and 70.10 (8579.71 eggs) for TdT. The TdT had a shorter adult longevity, longer development time, and higher adult emergence rate than did its non-infected bisexual counterpart. CONCLUSION: A medium brood size in a A. pernyi egg host was optimal to produce offspring parasitoids with higher fitness parameters for both bisexual Wolbachia-uninfected and thelytokous Wolbachia-infected lines of T. dendrolimi. The determination of optimal clutch size for T. dendrolimi will provide the reference for the quality control of T. dendrolimi production and improvement of the field performance of the wasps. © 2020 Society of Chemical Industry.


Assuntos
Himenópteros , Mariposas , Wolbachia , Animais , China , Tamanho da Ninhada , Feminino , Masculino , Óvulo , Controle de Qualidade
5.
Sci Rep ; 9(1): 18114, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792331

RESUMO

Thelytokous Wolbachia-infected Trichogramma spp. are widely used egg parasitoids against lepidopteran pests in biological control programs. Wolbachia may manipulate host wasps for superparasitism and is sensitive to temperature. To explore effects of temperature and superparasitism, we compared fitness parameters and Wolbachia-mediated phenotype of thelytokous Wolbachia-infected Trichogramma dendrolimi between those emerging from superparasitised or single-parasitised hosts at 17, 21, 25, or 29 °C. Infected mothers of T. dendrolimi showed reduced superparasitism and parasitism increased with temperature. Wolbachia titre decreased with temperature when females emerged from singly-parasitised hosts, but there was no correlation in superparasitised hosts. Females showed higher Wolbachia titres at 21, 25, or 29 °C when developing from superparasitised hosts. The daily male ratio of offspring increased with temperature, and the day-age threshold for 5%, 50%, or 95% daily male ratio decreased with temperature in both parasitism forms. Females that emerged from superparasitised hosts had a shorter life span and reduced fecundity. These results indicate that Wolbachia may affect host behaviour by increasing superparasitism to enhance its spread, but this has negative effects on thelytokous Wolbachia-infected T. dendrolimi.


Assuntos
Interações Hospedeiro-Parasita/fisiologia , Himenópteros/crescimento & desenvolvimento , Himenópteros/microbiologia , Wolbachia/fisiologia , Animais , Feminino , Fertilidade , Aptidão Genética , Lepidópteros/parasitologia , Masculino , Óvulo/parasitologia , Partenogênese , Controle Biológico de Vetores/métodos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA