Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Direct ; 7(8): e517, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37577137

RESUMO

AT-HOOK MOTIF NUCLEAR LOCALIZED (AHL) proteins occur in all sequenced plant species. They bind to the AT-rich DNA sequences in chromosomes and regulate gene transcription related to diverse biological processes. However, the molecular mechanism underlying how AHL proteins regulate gene transcription is poorly understood. In this research, we used root hair production as a readout to study the function of two Arabidopsis AHL proteins, AHL17, and its closest homolog AHL28. Overexpression of AHL17 or AHL28 greatly enhanced root hair production by increasing the transcription of an array of genes downstream of RHD6. RHD6 is a key transcription factor that regulates root hair development. Mutation of RHD6 completely suppressed the overproduction of root hairs by blocking the transcription of AHL17-activated genes. The overexpression of AHL17 or AHL28, however, neither affected the transcription of RHD6 nor the accumulation of RHD6 protein. These two AHL proteins also did not directly interact with RHD6. Furthermore, we found that three members of the Heat Shock Protein70 family, which have been annotated as the subunits of the plant Mediator complex, could form a complex with both AHL17 and RHD6. Our research might reveal a previously unrecognized mechanism of how AHL proteins regulate gene transcription.

2.
Plant J ; 113(2): 211-224, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36478485

RESUMO

Gravitropism guides growth to shape plant architecture above and below ground. Mutations in LAZY1 impair stem gravitropism and cause less upright inflorescence branches (wider angles). The LAZY1 protein resides at the plasma membrane and in the nucleus. The plasma membrane pool is necessary and sufficient for setting branch angles. To investigate the molecular mechanism of LAZY1 function, we screened for LAZY1-interacting proteins in yeast. We identified BRXL4, a shoot-specific protein related to BREVIS RADIX. The BRXL4-LAZY1 interaction occurred at the plasma membrane in plant cells, and not detectably in the nucleus. Mutations in the C-terminus of LAZY1, but not other conserved regions, prevented the interaction. Opposite to lazy1, brxl4 mutants displayed faster gravitropism and more upright branches. Overexpressing BRXL4 produced strong lazy1 phenotypes. The apparent negative regulation of LAZY1 function is consistent with BRXL4 reducing LAZY1 expression or the amount of LAZY1 at the plasma membrane. Measurements indicated that both are true. LAZY1 mRNA was three-fold more abundant in brxl4 mutants and almost undetectable in BRXL4 overexpressors. Plasma membrane LAZY1 was higher and nuclear LAZY1 lower in brxl4 mutants compared with the wild type. To explain these results, we suggest that BRXL4 reduces the amount of LAZY1 at the plasma membrane where it functions in gravity signaling and promotes LAZY1 accumulation in the nucleus where it reduces LAZY1 expression, possibly by suppressing its own transcription. This explanation of how BRXL4 negatively regulates LAZY1 suggests ways to modify shoot system architecture for practical purposes.


Assuntos
Arabidopsis , Gravitropismo , Gravitropismo/genética , Arabidopsis/fisiologia , Brotos de Planta/metabolismo , Ácidos Indolacéticos/metabolismo , Membrana Celular/metabolismo
3.
PLoS Genet ; 12(7): e1006194, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27427911

RESUMO

Enhanced root hair production, which increases the root surface area for nutrient uptake, is a typical adaptive response of plants to phosphate (Pi) starvation. Although previous studies have shown that ethylene plays an important role in root hair development induced by Pi starvation, the underlying molecular mechanism is not understood. In this work, we characterized an Arabidopsis mutant, hps5, that displays constitutive ethylene responses and increased sensitivity to Pi starvation due to a mutation in the ethylene receptor ERS1. hps5 accumulates high levels of EIN3 protein, a key transcription factor involved in the ethylene signaling pathway, under both Pi sufficiency and deficiency. Pi starvation also increases the accumulation of EIN3 protein. Combined molecular, genetic, and genomic analyses identified a group of genes that affect root hair development by regulating cell wall modifications. The expression of these genes is induced by Pi starvation and is enhanced in the EIN3-overexpressing line. In contrast, the induction of these genes by Pi starvation is suppressed in ein3 and ein3eil1 mutants. EIN3 protein can directly bind to the promoter of these genes, some of which are also the immediate targets of RSL4, a key transcription factor that regulates root hair development. Based on these results, we propose that under normal growth conditions, the level of ethylene is low in root cells; a group of key transcription factors, including RSL4 and its homologs, trigger the transcription of their target genes to promote root hair development; Pi starvation increases the levels of the protein EIN3, which directly binds to the promoters of the genes targeted by RSL4 and its homologs and further increase their transcription, resulting in the enhanced production of root hairs. This model not only explains how ethylene mediates root hair responses to Pi starvation, but may provide a general mechanism for how ethylene regulates root hair development under both stress and non-stress conditions.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Etilenos/química , Fosfatos/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Antocianinas/química , Proteínas de Arabidopsis/genética , Mapeamento Cromossômico , Proteínas de Ligação a DNA , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Proteínas de Choque Térmico/genética , Mutação , Proteínas Nucleares/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Regiões Promotoras Genéticas , Transdução de Sinais/genética , Fatores de Transcrição/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA