RESUMO
New phenylisoxazole quinoxalin-2-amine hybrids 5a-i were successfully synthesised with yields of 53-85% and characterised with various spectroscopy methods. The synthesised hybrids underwent in vitro α-amylase and α-glucosidase inhibitory assays, with acarbose as the positive control. Through the biological study, compound 5h exhibits the highest α-amylase inhibitory activity with IC50 = 16.4 ± 0.1 µM while compounds 5a-c, 5e and 5h exhibit great potential as α-glucosidase inhibitors, with 5c being the most potent (IC50 = 15.2 ± 0.3 µM). Among the compounds, 5h exhibits potential as a dual inhibitor for both α-amylase (IC50 = 16.4 ± 0.1 µM) and α-glucosidase (IC50 = 31.6 ± 0.4 µM) enzymes. Through the molecular docking studies, the inhibition potential of the selected compounds is supported. Compound 5h showed important interactions with α-amylase enzyme active sites and exhibited the highest binding energy of -8.9 ± 0.10 kcal mol-1, while compound 5c exhibited the highest binding energy of -9.0 ± 0.20 kcal mol-1 by forming important interactions with the α-glucosidase enzyme active sites. The molecular dynamics study showed that the selected compounds exhibited relative stability when binding with α-amylase and α-glucosidase enzymes. Additionally, compound 5h demonstrated a similar pattern of motion and mechanism of action as the commercially available miglitol.
RESUMO
Elevated interleukin 8 (IL-8) expression has been linked to unfavorable outcomes in a range of inflammatory conditions, such as rheumatoid arthritis, psoriasis, and cancer. The human monoclonal antibody (HuMab) 10F8 and the hybridoma 35B11-B bind to an epitope on human IL-8, respectively. 10F8 inhibited interaction between IL-8 and neutrophils in eczema and pustulosis palmoplantaris patients while 35B11-B decreased size lesion in rat model. The binding interaction of monoclonal antibodies and IL-8, especially how complementarity-determining region (CDR) loops could bind the N-terminal of IL-8, has not been fully deliberated at molecular-level. Here, we used a combination of molecular docking, heated and long coarse-grained molecular dynamics simulations to identify key residues of established interaction. Based on heated MD simulation, docked pose of complexes generated by ClusPro showed good binding stability throughout of 70 ns simulation. Based on long molecular dynamic simulations, key residues for the binding were identified throughout of 1000 ns simulation. TYR-53, ASP-99, and ARG-100 of heavy chain CDR together with TYR-33 of light chain CDR are among the highest contributing energy residues within the binding interaction. Meanwhile, LYS11 and TYR13 of IL-8 are important for the determination of overall binding energy. Furthermore, the result of decomposition residues analysis is in good agreement with the interaction analysis data. Current study provides a list of important interacting residues and further scrutiny on these residues is essential for future development and design of a new and stable recombinant antibody against IL-8.Communicated by Ramaswamy H. Sarma.
RESUMO
In our effort to develop potent anti-hyperglycemic compounds with inhibitory activity against α-amylase and α-glucosidase, a series of novel quinoxaline-isoxazole moieties were synthesized. The novel quinoxaline-isoxazole derivatives were assessed in vitro for their anti-hyperglycemic activities on α-amylase and α-glucosidase inhibitions. The results revealed promising IC50 values compared to acarbose as a positive control for α-amylase and α-glucosidase. Among them, N-Ethyl-7-chloro-3-((3-phenylisoxazol-5-yl)methoxy)quinoxalin-2-amine 5b showed dual inhibitory with IC50 of 24.0 µM for α-amylase and 41.7 µM for α-glucosidase. In addition, N-Ethyl-7-methoxy-3-((3-(2-chlorophenyl)isoxazol-5-yl)methoxy)quinoxalin-2-amine 5j also had dual bioactivities against α-amylase and α-glucosidase with IC50 of 17.0 and 40.1 µM, respectively. Nevertheless, two more compounds N-Ethyl-7-cyano-3-((3-phenylisoxazol-5-yl)methoxy)quinoxaline-2-amine 5e showed strong mono-inhibition for α-glucosidase with IC50 of 16.6 µM followed by N-Ethyl-7-methoxy-3-((3-phenylisoxazol-5-yl)methoxy)quinoxalin-2-amine 5 f with IC50 of 18.6 µM. The molecular docking study for α-glucosidase inhibitor provided the binding energy ranging from 8.3 to 9.1 kcal/mol and α-amylase inhibitor showed the binding energy score at 8.4 and 8.5 kcal/mol. The dual inhibitions nature of 5b and 5j were further analyzed and confirmed via molecular dynamics including the stability of the compound, interaction energy, binding free energy, and the interaction residue analysis using the MM-GBSA approach. The results showed that compound 5j was the most potent compound. Lastly, the drug-likeness properties were also evaluated with all synthesized compounds 5a-5j and the results reveal that all potent compounds meet Lipinski's rules of five.
Assuntos
Quinoxalinas , alfa-Glucosidases , Simulação de Acoplamento Molecular , alfa-Glucosidases/metabolismo , Quinoxalinas/farmacologia , Inibidores de Glicosídeo Hidrolases/química , alfa-Amilases , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
A total of fourteen pyrazoline derivatives were synthesized through cyclo-condensation reactions by chalcone derivatives with different types of semicarbazide. These compounds were characterized by IR, 1D-NMR (1H, 13C and Distortionless Enhancement by Polarization Transfer - DEPT-135) and 2D-NMR (COSY, HSQC and HMBC) as well as mass spectroscopy analysis (HRMS). The synthesized compounds were tested for their antituberculosis activity against Mycobacterium tuberculosis H37Ra in vitro. Based on this activity, compound 4a showed the most potent inhibitory activity, with a minimum inhibitory concentration (MIC) value of 17 µM. In addition, six other synthesized compounds, 5a and 5c-5g, exhibited moderate activity, with MIC ranges between 60 µM to 140 µM. Compound 4a showed good bactericidal activity with a minimum bactericidal concentration (MBC) value of 34 µM against Mycobacterium tuberculosis H37Ra. Molecular docking studies for compound 4a on alpha-sterol demethylase was done to understand and explore ligand-receptor interactions, and to hypothesize potential refinements for the compound.
Assuntos
Inibidores de 14-alfa Desmetilase/síntese química , Antituberculosos/síntese química , Proteínas de Bactérias/antagonistas & inibidores , Pirazóis/síntese química , Semicarbazidas/síntese química , Esterol 14-Desmetilase/química , Inibidores de 14-alfa Desmetilase/farmacologia , Antituberculosos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Fluconazol/química , Fluconazol/farmacologia , Isoniazida/química , Isoniazida/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Pirazóis/farmacologia , Semicarbazidas/farmacologia , Esterol 14-Desmetilase/metabolismo , Homologia Estrutural de Proteína , TermodinâmicaRESUMO
Inactivation of smoothened protein (SMO) by the antagonists in SHH-driven cancer types is essential for inhibition of cancer progression. This article presents molecular dynamics (MD) trajectories of water solution of three protein-ligand complexes smoothened-ß-sitosterol (SMO-BST), smoothened-sonidegib (SMO-SNG) and smoothened-cholesterol (SMO-CLR) using CHARMM36 and SPC/E water model combination. Additionally, the work presents the topologies and trajectories of GROMACS files that were employed to analyse the protein-ligand interaction types (PyContact) and binding energy calculation (g_mmpbsa). The data demonstrated that equilibrated models of SMO-SNG and SMO-CLR complexes showed crucial residues that almost similar for interaction and contribution energy as previously reported in laboratory setup (in vitro). Initial simulations confirmed the role of ARG451 and TRP535 in the dynamic regulation of SMO. These data then were used as a reference for understanding the molecular dynamics of SMO-BST complex and thus predicted its mechanism of action.
RESUMO
Purpose: More than half of the diagnostic and therapeutic recombinant protein production depends on mammalian-based expression system. However, the generation of recombinant antibodies remains a challenge in mammalian cells due to the disulfide bond formation and reducing cytoplasm. Therefore, the production of functional recombinant antibodies in target cell line is necessary to be evaluated before used in therapeutic application such intrabodies against HIV-1. Methods: The work was to test expression of a single-chain variable fragment (scFv) antibody against HIV-1 Capsid p24 protein in a human mammalian-based expression system using HEK293T and Jurkat T cells as a model. Three expression plasmid vectors expressing scFv 183-H12-5C were generated and introduced into HEK293T. Expression of the scFv was analyzed, while ELISA and immunoblotting analysis verified its binding. The evaluation of the recombinant antibody was confirmed by HIV-1 replication and MAGI infectivity assay in Jurkat T cells. Results: Three plasmid vectors expressing scFv 183-H12-5C was successfully engineered in this study. Recombinant antibodies scFv (~29 kDa) and scFv-Fc (~52 kDa) in the cytoplasm of HEK293T were effectively obtained by transfected the cells with engineered pCDNA3.3-mu-IgGk-scFv 183-H12-5C and pCMX2.5-scFv 183-H12-5C-hIgG1-Fc plasmid vectors respectively. scFv and scFv-Fc are specifically bound recombinant p24, and HIV-1 derived p24 (gag) evaluated by ELISA and Western blot. Jurkat T cells transfected by pCDNA3.3-scFv 183-H12-5C inhibit the replication-competent NL4-3 viral infectivity up to 60%. Conclusion: Anti-p24 scFv 183-H12-5C antibody generated is suitable to be acted as intrabodies and may serve as a valuable tool for the development of antibody-based biotherapeutics against HIV-1.