Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Enzymol ; 699: 121-161, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38942501

RESUMO

The step catalyzed by terpene synthases is a well-recognized and significant bottleneck in engineered terpenoid bioproduction. Consequently, substantial efforts have been devoted towards increasing metabolic flux catalyzed by terpene synthases, employing strategies such as gene overexpression and protein engineering. Notably, numerous studies have demonstrated remarkable titer improvements by applying translational fusion, typically by fusing the terpene synthase with a prenyl diphosphate synthase that catalyzes the preceding step in the pathway. The main appeal of the translational fusion approach lies in its simplicity and orthogonality to other metabolic engineering tools. However, there is currently limited understanding of the underlying mechanism of flux enhancement, owing to the unpredictable and often protein-specific effects of translational fusion. In this chapter, we discuss practical considerations when engineering translationally fused terpene synthases, drawing insights from our experience and existing literature. We also provide detailed experimental workflows and protocols based on our previous work in budding yeast (Saccharomyces cerevisiae). Our intention is to encourage further research into the translational fusion of terpene synthases, anticipating that this will contribute mechanistic insights not only into the activity, behavior, and regulation of terpene synthases, but also of other enzymes.


Assuntos
Alquil e Aril Transferases , Engenharia Metabólica , Saccharomyces cerevisiae , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Terpenos/metabolismo , Biossíntese de Proteínas , Engenharia de Proteínas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA