Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38923484

RESUMO

The production of food, feed, fiber, and fuel is a key task of agriculture, which has to cope with many challenges in the upcoming decades, e.g., a higher demand, climate change, lack of workers, and the availability of arable land. Vision systems can support making better and more sustainable field management decisions, but also support the breeding of new crop varieties by allowing temporally dense and reproducible measurements. Recently, agricultural robotics got an increasing interest in the vision and robotics communities since it is a promising avenue for coping with the aforementioned lack of workers and enabling more sustainable production. While large datasets and benchmarks in other domains are readily available and enable significant progress, agricultural datasets and benchmarks are comparably rare. We present an annotated dataset and benchmarks for the semantic interpretation of real agricultural fields. Our dataset recorded with a UAV provides high-quality, pixel-wise annotations of crops and weeds, but also crop leaf instances at the same time. Furthermore, we provide benchmarks for various tasks on a hidden test set comprised of different fields: known fields covered by the training data and a completely unseen field. Our dataset, benchmarks, and code are available at https://www.phenobench.org.

2.
PLoS One ; 16(8): e0256340, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34407122

RESUMO

Understanding the growth and development of individual plants is of central importance in modern agriculture, crop breeding, and crop science. To this end, using 3D data for plant analysis has gained attention over the last years. High-resolution point clouds offer the potential to derive a variety of plant traits, such as plant height, biomass, as well as the number and size of relevant plant organs. Periodically scanning the plants even allows for performing spatio-temporal growth analysis. However, highly accurate 3D point clouds from plants recorded at different growth stages are rare, and acquiring this kind of data is costly. Besides, advanced plant analysis methods from machine learning require annotated training data and thus generate intense manual labor before being able to perform an analysis. To address these issues, we present with this dataset paper a multi-temporal dataset featuring high-resolution registered point clouds of maize and tomato plants, which we manually labeled for computer vision tasks, such as for instance segmentation and 3D reconstruction, providing approximately 260 million labeled 3D points. To highlight the usability of the data and to provide baselines for other researchers, we show a variety of applications ranging from point cloud segmentation to non-rigid registration and surface reconstruction. We believe that our dataset will help to develop new algorithms to advance the research for plant phenotyping, 3D reconstruction, non-rigid registration, and deep learning on raw point clouds. The dataset is freely accessible at https://www.ipb.uni-bonn.de/data/pheno4d/.


Assuntos
Solanum lycopersicum/fisiologia , Interface Usuário-Computador , Zea mays/fisiologia , Imageamento Tridimensional , Solanum lycopersicum/anatomia & histologia , Aprendizado de Máquina , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Análise Espaço-Temporal , Zea mays/anatomia & histologia
3.
PLoS One ; 16(2): e0247243, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33630896

RESUMO

Plant phenotyping is a central task in crop science and plant breeding. It involves measuring plant traits to describe the anatomy and physiology of plants and is used for deriving traits and evaluating plant performance. Traditional methods for phenotyping are often time-consuming operations involving substantial manual labor. The availability of 3D sensor data of plants obtained from laser scanners or modern depth cameras offers the potential to automate several of these phenotyping tasks. This automation can scale up the phenotyping measurements and evaluations that have to be performed to a larger number of plant samples and at a finer spatial and temporal resolution. In this paper, we investigate the problem of registering 3D point clouds of the plants over time and space. This means that we determine correspondences between point clouds of plants taken at different points in time and register them using a new, non-rigid registration approach. This approach has the potential to form the backbone for phenotyping applications aimed at tracking the traits of plants over time. The registration task involves finding data associations between measurements taken at different times while the plants grow and change their appearance, allowing 3D models taken at different points in time to be compared with each other. Registering plants over time is challenging due to its anisotropic growth, changing topology, and non-rigid motion in between the time of the measurements. Thus, we propose a novel approach that first extracts a compact representation of the plant in the form of a skeleton that encodes both topology and semantic information, and then use this skeletal structure to determine correspondences over time and drive the registration process. Through this approach, we can tackle the data association problem for the time-series point cloud data of plants effectively. We tested our approach on different datasets acquired over time and successfully registered the 3D plant point clouds recorded with a laser scanner. We demonstrate that our method allows for developing systems for automated temporal plant-trait analysis by tracking plant traits at an organ level.


Assuntos
Plantas/anatomia & histologia , Algoritmos , Automação/métodos , Imageamento Tridimensional/métodos , Lasers , Fenótipo , Melhoramento Vegetal/métodos , Folhas de Planta/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA