Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 16(11): 2116-2123, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34648268

RESUMO

Natural products and their analogues are often challenging to synthesize due to their complex scaffolds and embedded functional groups. Solely relying on engineering the biosynthesis of natural products may lead to limited compound diversity. Integrating synthetic biology with synthetic chemistry allows rapid access to much more diverse portfolios of xenobiotic compounds, which may accelerate the discovery of new therapeutics. As a proof-of-concept, by supplementing an Escherichia coli strain expressing the violacein biosynthesis pathway with 5-bromo-tryptophan in vitro or tryptophan 7-halogenase RebH in vivo, six halogenated analogues of violacein or deoxyviolacein were generated, demonstrating the promiscuity of the violacein biosynthesis pathway. Furthermore, 20 new derivatives were generated from 5-brominated violacein analogues via the Suzuki-Miyaura cross-coupling reaction directly using the crude extract without prior purification. Herein we demonstrate a flexible and rapid approach to access a diverse chemical space that can be applied to a wide range of natural product scaffolds.


Assuntos
Produtos Biológicos/química , Indóis/química , Vias Biossintéticas , Estrutura Molecular , Biologia Sintética
2.
ACS Synth Biol ; 10(2): 402-411, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33497199

RESUMO

Prokaryotic cell-free coupled transcription-translation (TX-TL) systems are emerging as a powerful tool to examine natural product biosynthetic pathways in a test tube. The key advantages of this approach are the reduced experimental time scales and controlled reaction conditions. To realize this potential, it is essential to develop specialized cell-free systems in organisms enriched for biosynthetic gene clusters. This requires strong protein production and well-characterized synthetic biology tools. The Streptomyces genus is a major source of natural products. To study enzymes and pathways from Streptomyces, we originally developed a homologous Streptomyces cell-free system to provide a native protein folding environment, a high G+C (%) tRNA pool, and an active background metabolism. However, our initial yields were low (36 µg/mL) and showed a high level of batch-to-batch variation. Here, we present an updated high-yield and robust Streptomyces TX-TL protocol, reaching up to yields of 266 µg/mL of expressed recombinant protein. To complement this, we rapidly characterize a range of DNA parts with different reporters, express high G+C (%) biosynthetic genes, and demonstrate an initial proof of concept for combined transcription, translation, and biosynthesis of Streptomyces metabolic pathways in a single "one-pot" reaction.


Assuntos
Engenharia Metabólica/métodos , Família Multigênica , Biossíntese de Proteínas/genética , Streptomyces/genética , Streptomyces/metabolismo , Produtos Biológicos/metabolismo , Extratos Celulares , DNA/metabolismo , Heme/biossíntese , Melaninas/biossíntese , Regiões Promotoras Genéticas , Proteínas Recombinantes/metabolismo , Biologia Sintética/métodos
4.
ACS Synth Biol ; 8(11): 2566-2575, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31622554

RESUMO

By leveraging advances in DNA synthesis and molecular cloning techniques, synthetic biology increasingly makes use of large construct libraries to explore large design spaces. For biosynthetic pathway engineering, the ability to screen these libraries for a variety of metabolites of interest is essential. If the metabolite of interest or the metabolic phenotype is not easily measurable, screening soon becomes a major bottleneck involving time-consuming culturing, sample preparation, and extraction. To address this, we demonstrate the use of automated laser-assisted rapid evaporative ionization mass spectrometry (LA-REIMS)-a form of ambient laser desorption ionization mass spectrometry-to perform rapid mass spectrometry analysis direct from agar plate yeast colonies without sample preparation or extraction. We use LA-REIMS to assess production levels of violacein and betulinic acid directly from yeast colonies at a rate of 6 colonies per minute. We then demonstrate the throughput enabled by LA-REIMS by screening over 450 yeast colonies within <4 h, while simultaneously generating recoverable glycerol stocks of each colony in real time. This showcases LA-REIMS as a prescreening tool to complement downstream quantification methods such as liquid chromatography-mass spectroscopy (LCMS). By prescreening several hundred colonies with LA-REIMS, we successfully isolate and verify a strain with a 2.5-fold improvement in betulinic acid production. Finally, we show that LA-REIMS can detect 20 out of a panel of 27 diverse biological molecules, demonstrating the broad applicability of LA-REIMS to metabolite detection. The rapid and automated nature of LA-REIMS makes this a valuable new technology to complement existing screening technologies currently employed in academic and industrial workflows.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Triterpenos/síntese química , Ágar , Cromatografia Líquida/métodos , Meios de Cultura , Triterpenos Pentacíclicos , Plasmídeos/genética , Saccharomyces cerevisiae/metabolismo , Biologia Sintética/métodos , Transformação Genética , Ácido Betulínico
5.
J Biol Eng ; 13: 8, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30675181

RESUMO

BACKGROUND: The automation of modular cloning methodologies permits the assembly of many genetic designs. Utilising characterised biological parts aids in the design and redesign of genetic pathways. The characterisation information held on datasheets can be used to determine whether a biological part meets the design requirements. To manage the design of genetic pathways, researchers have turned to modelling-based computer aided design software tools. RESULT: An automated workflow has been developed for the design and build of heterologous metabolic pathways. In addition, to demonstrate the powers of electronic datasheets we have developed software which can transfer part information from a datasheet to the Design of Experiment software JMP. To this end we were able to use Design of Experiment software to rationally design and test randomised samples from the design space of a lycopene pathway in E. coli. This pathway was optimised by individually modulating the promoter strength, RBS strength, and gene order targets. CONCLUSION: The use of standardised and characterised biological parts will empower a design-oriented synthetic biology for the forward engineering of heterologous expression systems. A Design of Experiment approach streamlines the design-build-test cycle to achieve optimised solutions in biodesign. Developed automated workflows provide effective transfer of information between characterised information (in the form of datasheets) and DoE software.

6.
Synth Biol (Oxf) ; 3(1): ysy016, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-32995523

RESUMO

The polyhydroxyalkanoates (PHAs) are microbially-produced biopolymers that could potentially be used as sustainable alternatives to oil-derived plastics. However, PHAs are currently more expensive to produce than oil-derived plastics. Therefore, more efficient production processes would be desirable. Cell-free metabolic engineering strategies have already been used to optimize several biosynthetic pathways and we envisioned that cell-free strategies could be used for optimizing PHAs biosynthetic pathways. To this end, we developed several Escherichia coli cell-free systems for in vitro prototyping PHAs biosynthetic operons, and also for screening relevant metabolite recycling enzymes. Furthermore, we customized our cell-free reactions through the addition of whey permeate, an industrial waste that has been previously used to optimize in vivo PHAs production. We found that the inclusion of an optimal concentration of whey permeate enhanced relative cell-free GFPmut3b production by approximately 50%. In cell-free transcription-translation prototyping reactions, gas chromatography-mass spectrometry quantification of cell-free 3-hydroxybutyrate (3HB) production revealed differences between the activities of the Native ΔPhaC_C319A (1.18 ± 0.39 µM), C104 ΔPhaC_C319A (4.62 ± 1.31 µM) and C101 ΔPhaC_C319A (2.65 ± 1.27 µM) phaCAB operons that were tested. Interestingly, the most active operon, C104 produced higher levels of PHAs (or PHAs monomers) than the Native phaCAB operon in both in vitro and in vivo assays. Coupled cell-free biotransformation/transcription-translation reactions produced greater yields of 3HB (32.87 ± 6.58 µM), and these reactions were also used to characterize a Clostridium propionicum Acetyl-CoA recycling enzyme. Together, these data demonstrate that cell-free approaches complement in vivo workflows for identifying additional strategies for optimizing PHAs production.

7.
ACS Synth Biol ; 5(10): 1059-1069, 2016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27096716

RESUMO

Golden Gate cloning is a prominent DNA assembly tool in synthetic biology for the assembly of plasmid constructs often used in combinatorial pathway optimization, with a number of assembly kits developed specifically for yeast and plant-based expression. However, its use for synthetic biology in commonly used bacterial systems such as Escherichia coli has surprisingly been overlooked. Here, we introduce EcoFlex a simplified modular package of DNA parts for a variety of applications in E. coli, cell-free protein synthesis, protein purification and hierarchical assembly of transcription units based on the MoClo assembly standard. The kit features a library of constitutive promoters, T7 expression, RBS strength variants, synthetic terminators, protein purification tags and fluorescence proteins. We validate EcoFlex by assembling a 68-part containing (20 genes) plasmid (31 kb), characterize in vivo and in vitro library parts, and perform combinatorial pathway assembly, using pooled libraries of either fluorescent proteins or the biosynthetic genes for the antimicrobial pigment violacein as a proof-of-concept. To minimize pathway screening, we also introduce a secondary module design site to simplify MoClo pathway optimization. In summary, EcoFlex provides a standardized and multifunctional kit for a variety of applications in E. coli synthetic biology.


Assuntos
Escherichia coli/genética , Engenharia Genética/métodos , Indóis/metabolismo , Biologia Sintética/métodos , Escherichia coli/metabolismo , Biblioteca Gênica , Vetores Genéticos , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA