Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 251(Pt 2): 118645, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38485077

RESUMO

Every year, a significant amount of antimony (Sb) enters the environment from natural and anthropogenic sources like mining, smelting, industrial operations, ore processing, vehicle emissions, shooting activities, and coal power plants. Humans, plants, animals, and aquatic life are heavily exposed to hazardous Sb or antimonide by either direct consumption or indirect exposure to Sb in the environment. This review summarizes the current knowledge about Sb global occurrence, its fate, distribution, speciation, associated health hazards, and advanced biochar composites studies used for the remediation of soil contaminated with Sb to lessen Sb bioavailability and toxicity in soil. Anionic metal(loid) like Sb in the soil is significantly immobilized by pristine biochar and its composites, reducing their bioavailability. However, a comprehensive review of the impacts of biochar-based composites on soil Sb remediation is needed. Therefore, the current review focuses on (1) the fundamental aspects of Sb global occurrence, global soil Sb contamination, its transformation in soil, and associated health hazards, (2) the role of different biochar-based composites in the immobilization of Sb from soil to increase biochar applicability toward Sb decontamination. The review aids in developing advanced, efficient, and effective engineered biochar composites for Sb remediation by evaluating novel materials and techniques and through sustainable management of Sb-contaminated soil, ultimately reducing its environmental and health risks.


Assuntos
Antimônio , Carvão Vegetal , Recuperação e Remediação Ambiental , Poluentes do Solo , Antimônio/análise , Antimônio/química , Carvão Vegetal/química , Poluentes do Solo/análise , Poluentes do Solo/química , Recuperação e Remediação Ambiental/métodos , Descontaminação/métodos , Solo/química
2.
J Environ Manage ; 347: 119018, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37748293

RESUMO

Soil contamination and its subsequent impact on the food chain is a pressing challenge in the present day. The application of biochar has demonstrated a significant and positive effect on soil health, thereby enhancing plant growth and development. However, the application of biochar (BC) produced from negative pressure-induced carbonization to mitigate metal(loid) contamination is a new strategy that has been studied in current research. Results depicted that the application of biochar derived from the negative pressure carbonization (vacuum-assisted biochar (VBC) has a significant (p ≤ 0.05) positive impact on plant growth and physiological characteristics by influencing immobilization and speciation of metal(loid) in the soil system. Moreover, the interactive effect of VBC on physiological characteristics (photosynthesis, gas exchange, and chlorophyll contents) and antioxidant activities of maize (Zea mays L.) was significantly (p ≤ 0.05) positive by confining the translocation and movement of metal(loid)s to the aerial part of the maize plant. X-ray diffraction (XRD) provided information on the structural and chemical changes induced by the VBC-500 °C explaining metal(loid) adsorption onto mineral surfaces and complexation that can affect their mobility, availability, and toxicity in the contaminated soil. Fourier transform infrared spectroscopy (FTIR) further provided a more detailed understanding of the metal(loid)s and biochar complexation mechanisms influenced by VBC-based functional groups -OH, C-Hn, -COOH, CO, C-O-C, CC, C-O, C-H, OH, and C-C in the binding process. These results suggest that the application of biochar prepared at 500 °C under negative pressure-induced carbonization conditions to the soil is the most efficient way to reduce the uptake and transfer of metal(loid)s by influencing their mobility and availability in the soil-plant system.


Assuntos
Poluentes do Solo , Poluentes do Solo/análise , Carvão Vegetal/química , Metais/análise , Solo/química , Zea mays
3.
Environ Sci Pollut Res Int ; 30(40): 92842-92858, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37495807

RESUMO

The unprecedented stride of urbanization and industrialization has given rise to anthropogenic input of tiny particulates into the air. Urban particulate matter (PM) armored with potentially toxic metals (PTMs) could be lethal to the environment and human health. Therefore, the present study was planned to investigate the spectroscopic fingerprinting, pollution status and health risk of PM-associated PTMs collected from ten functional areas of Lahore, Pakistan. The diverged results of studied qualitative and quantitative analyses showed distinct compositional and pollution characteristics of PTMs in urban PM with respect to selected functional areas. The XRD results evident the fractional presence of metal-containing minerals, i.e., pyrite (FeS2), calcite (CaCO3), zinc sulfate (ZnSO4), and chalcostibite (CuSbS2). Several chemical species of Zn, Pb, and As were found in PM of various functional areas. However, morphologies of PM showed anthropogenic influence with slight quantitative support of PTMs presence. The cumulative representation of PTMs pollution of all selected areas depicted that Cd was heavily polluted (Igeo=3.21) while Cr (Igeo=1.82) and Ni (Igeo=2.11) were moderately polluted PTMs. The industrial area having high pollution status of Cd (Igeo=5.54 and EF=18.07), Cu (Igeo=6.4 and EF=32.61), Cr (Igeo=4.03 and EF=6.53), Ni (Igeo=5.7 and EF=20.17), and Zn (Igeo=4.87 and EF=11.27) was prominent among other studied areas. The PTMs were likely to pose a high non-cancerous risk in IndAr (HI = 7.48E+00) and HTV (HI = 1.22E +00) areas predominantly due to Zn with HQ > 1. However, Cr was prominent to cause cancerous risks with values beyond the tolerable range (1.00E-04 to 1.00E-06).


Assuntos
Monitoramento Ambiental , Metais Pesados , Humanos , Monitoramento Ambiental/métodos , Material Particulado/análise , Cádmio/análise , Metais Pesados/análise , Medição de Risco , China
4.
Sci Total Environ ; 772: 145389, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578171

RESUMO

Wide spread documentation of antibiotic pollution is becoming a threat to aquatic environment. Erythromycin (ERY), a macrolide belonging antibiotic is at the top of this list with its concentrations ranging between ng/L to a few µg/L in various global waterbodies giving rise to ERY-resistance genes (ERY-RGs) and ERY- resistance bacteria (ERY-RBs) posing serious threat to the aquatic organisms. ERY seems resistant to various conventional water treatments, remained intact and even increased in terms of mass loads after treatment. Enhanced oxidation potential, wide pH range, elevated selectivity, adaptability and greater efficiency makes advance oxidation processes (AOPs) top priority for degrading pollutants with aromatic rings and unsaturated bonds like ERY. In this manuscript, recent developments in AOPs for ERY degradation are reported along with the factors that affect the degradation mechanism. ERY, marked as a risk prioritized macrolide antibiotic by 2015 released European Union watch list, most probably due to its protein inhibition capability considered third most widely used antibiotic. The current review provides a complete ERY overview including the environmental entry sources, concentration in global waters, ERY status in STPs, as well as factors affecting their functionality. Along with that this study presents complete outlook regarding ERY-RGs and provides an in depth detail regarding ERY's potential threats to aquatic biota. This study helps in figuring out the best possible strategy to tackle antibiotic pollution keeping ERY as a model antibiotic because of extreme toxicity records.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Antibacterianos , Ecossistema , Eritromicina , Oxirredução , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
5.
Environ Pollut ; 270: 116203, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33321434

RESUMO

Arsenic in copper flash smelting (FS) systems not only affects the quality of products but also poses significant technological and environmental problems. Based on the assessment of arsenic mass partitioning in the FS system, arsenic elimination in off-gassing and tailings is 22%, and most of the arsenic output (69%) is recycled in the FS system. Circulating arsenic, especially arsenic in recycled dust and slag concentrate, is the key reason for high-arsenic-content feed. Dust-type recycled materials (RMs) contribute much more arsenic to the feed than slag-type RMs. Flash smelting furnace electrostatic precipitator (FSF ESP) dust contributes makese the largest contribution to arsenic among the dust-type RMs of mixed dust, especially trivalent arsenic, followed by FSF and flash converting furnace waste heat boiler (FCF WHB) dust, which contributes pentavalent arsenic. FCF WHB dust exhibits a relatively low arsenic content, consisting mainly of As(V)-O. Slag-type recycled materials contribute As(V)-O to the total feed, and As(III) originates from copper concentrates. Considering the arsenic contribution and environmental risk, reducing the recovery of FSF ESP dust can greatly decrease the arsenic grade of FSF feed and volatile As2O3. As one of the main arsenic sources in feed, FSF slag concentrate should be carefully disposed of if separated from feed materials because of its high arsenic-related environmental risk. In contrast, WHB dust and FCF slag are more suitable as RM due to their high copper content and low arsenic risk.


Assuntos
Arsênio , Arsênio/análise , Cobre/análise , Poeira , Poluição Ambiental , Metalurgia
6.
Environ Pollut ; 270: 116077, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33338960

RESUMO

Titanium dioxide nanoparticles (TiO2NPs) application in variety of commercial products would likely release these NPs into the environment. The interaction of TiO2NPs with terrestrial plants upon uptake can disturb plants functional traits and can also transfer to the food chain members. In this study, we investigated the impact of TiO2NPs on wheat (Triticum aestivum L.) plants functional traits, primary macronutrients assimilation, and change in the profile of bio-macromolecule. Moreover, the mechanism of biochar-TiO2NPs interaction, immobilization, and tissue accumulation to cell translocation of NPs in plants was also explored. The results indicated that the contents of Ti in wheat tissues was reduced about 3-fold and the Ti transfer rate (per day) was reduced about 2 fold at the 1000 mg L-1 exposure level of TiO2NPs in biochar amended exposure medium. Transmission electron microscopy (TEM) with elemental mapping confirmed that Ti concentrated in plant tissues in nano-form. The interactive effect of TiO2NPs + biochar amendment on photosynthesis related and gas exchange traits was observed at relatively low TiO2NPs exposure level (200 mg L-1), which induced the positive impact on wheat plants proliferation. TiO2NPs alone exposure to wheat also modified the plant's bio-macromolecules profile with the reduction in the assimilation of primary macronutrients, which could affect the food crop nutritional value and quality. X-ray photoelectron spectroscopy (XPS) chemical analysis of biochar + TiO2NPs showed an additional peak, which indicated the binding interaction of NPs with biochar. Moreover, Fourier-transform infrared (FTIR) spectroscopy confirmed that the biochar carboxyl group is the main functionality involved in the bonding process with TiO2NPs. These findings will help for a mechanistic understanding of the role of biochar in the reduction of NPs bioavailability to primary producers of the terrestrial environment.


Assuntos
Nanopartículas , Titânio , Carvão Vegetal
7.
Environ Pollut ; 265(Pt A): 114816, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32473507

RESUMO

In this study, polymetal(iod)s-contaminated mining soil from the Huainan coalfield, Anhui, China, was used to investigate the synergistic effects of biochar (BC), raw coal (RC), and hydrothermally treated coal (HTC) on the immobilization, speciation, transformation, and accumulation of Cd, Cr, and Pb in a soil-plant system via geochemical speciation and advanced spectroscopic approaches. The results revealed that the BC-2% and BC-HTC amendments were more effective than the individual RC, and/or HTC amendments to reduce ethylene-diamine-tetraacetic acid (EDTA)-extractable Cd, Cr, and Pb concentrations by elevating soil pH and soil organic carbon content. Soil pH increased by 1.5 and 2.5 units after BC-2% and BC-HTC amendments, respectively, which reduced EDTA-extractable Cd, Cr, and Pb to more stabilized forms. Metal speciation and X-ray photoelectron spectroscopy analyses suggested that the BC-HTC amendment stimulated the transformation of reactive Cd, Cr, and Pb (exchangeable and carbonate-bound) states to less reachable (oxide and residual) states to decrease the toxicity of these heavy metals. Fourier transform infrared spectroscopy and X-ray diffraction analyses suggested that reduction and adsorption by soil colloids may be involved in the mechanism of Cd(II), Cr(VI), and Pb(II) immobilization via hydroxyl, carbonyl, carboxyl, and amide groups in the BC and HTC. Additionally, the BC-2% and BC-HTC amendments reduced Cd and Pb accumulation in maize shoots, which could mainly be ascribed to the reduction of EDTA-extractable heavy metals in the soil and more functional groups in the roots, thus inhibiting metal ion translocation by providing the electrons necessary for immobilization, compared to those in roots grown in the unamended soil. Therefore, the combined application of BC and HTC was more effective than the individual application of these amendments to minimize the leaching, availability, and exchangeable states of Cd, Cr, and Pb in polymetal(iod)s-contaminated mining soil and accumulation in maize.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Disponibilidade Biológica , Cádmio/análise , Carbono , Carvão Vegetal , China , Carvão Mineral , Chumbo , Solo
8.
Ecotoxicol Environ Saf ; 191: 110244, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32004946

RESUMO

The purpose of this research was to examine the influence of hydrothermally treated coal gangue (HTCG) with and without biochar (BC) on the leaching, bioavailability, and redistribution of chemical fractions of heavy metals (HMs) in copper mine tailing (Cu-MT). An increase in pH, water holding capacity (WHC) and soil organic carbon (SOC) were observed due to the addition of BC in combination with raw coal gangue (RCG) and HTCG. A high Cu and other HMs concentration in pore water (PW) and amended Cu-MT were reduced by the combination of BC with RCG and/or HTCG, whereas individual application of RCG slightly increased the Cu, Cd, and Zn leaching and bioavailability, compared to the unamended Cu-MT. Sequential extractions results showed a reduction in the exchangeable fraction of Cu, Cd, Pb, and Zn and elevation in the residual fraction following the addition of BC-2% and BC-HTCG. However, individual application of RCG slightly increased the Cu, Cd, and Zn exchangeable fractions assessed by chemical extraction method. Rapeseed was grown for the following 45 days during which physiological parameters, metal uptake transfer rate (TR), bioconcentration factor (BCF), and translocation factor (TF) were measured after harvesting. In the case of plant biomass, no significant difference between applied amendments was observed for the fresh biomass (FBM) and dry biomass (DBM) of shoots and roots of rapeseed. However, BC-2% and BC-HTCG presented the lowest HMs uptake, TR, BCF (BCFroot and BCFshoot), and TF for Cu, Cd, Cr, Ni, Pb, and Zn in rapeseed among the other amendments compared to the unamended Cu-MT. Overall, these findings are indicative that using biochar in combination with RCG and/or HTCG led to a larger reduction in HMs leaching and bioavailability, due to their higher sorption capacity and could be a suitable remediation strategy for heavy metals in a Cu-MT.


Assuntos
Brassica napus/efeitos dos fármacos , Carvão Vegetal/farmacologia , Carvão Mineral/análise , Metais Pesados/metabolismo , Mineração , Poluentes do Solo/metabolismo , Adsorção , Disponibilidade Biológica , Brassica napus/metabolismo , Carvão Vegetal/química , Cobre/análise , Cobre/metabolismo , Metais Pesados/análise , Solo/química , Poluentes do Solo/análise
9.
Sci Total Environ ; 719: 135658, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31874752

RESUMO

Lead (Pb) is a non-essential and extremely noxious metallic-element whose biogeochemical cycle has been influenced predominantly by increasing human activities to a great extent. The introduction and enrichment of this ubiquitous contaminant in the terrestrial-environment has a long history and getting more attention due to its adverse health effects to living organisms even at very low exposure levels. Its lethal-effects can vary widely depending on the atmospheric-depositions, fates and distribution of Pb isotopes (i.e., 204Pb, 206Pb, 207Pb &208Pb) in the terrestrial-environment. Thus, it is essential to understand the depositional behavior and transformation mechanism of Pb and the factors affecting Pb isotopes composition in the terrestrial-compartments. Owing to the persistence nature of Pb-isotopic fractions, regardless of ongoing biogeochemical-processes taking place in soils and in other interlinked terrestrial-compartments of the biosphere makes Pb isotope ratios (Pb-IRs) more recognizable as a powerful and an efficient-tool for tracing the source(s) and helped uncover pertinent migration and transformation processes. This review discusses the ongoing developments in tracing migration pathway and distribution of lead in various terrestrial-compartments and investigates the processes regulating the Pb isotope geochemistry taking into account the source identification of lead, its transformation among miscellaneous terrestrial-compartments and detoxification mechanism in soil-plant system. Additionally, this compendium reveals that Pb-pools in various terrestrial-compartments differ in Pb isotopic fractionations. In order to improve understanding of partition behaviors and biogeochemical pathways of Pb isotope in the terrestrial environment, future works should involve investigation of changes in Pb isotopic compositions during weathering processes and atmospheric-biological sub-cycles.


Assuntos
Monitoramento Ambiental , Fracionamento Químico , Humanos , Isótopos , Chumbo , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA