Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
iScience ; 27(6): 110060, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38883829

RESUMO

Cancer-associated fibroblasts (CAFs) play a major role in reorganizing the physical tumor micro-environment and changing tissue stiffness. Herein, using an engineered three-dimensional (3D) model that mimics the tumor's native biomechanical environment, we characterized the changes in matrix stiffness caused by six patient-specific colorectal CAF populations. After 21 days of culture, atomic force microscopy (AFM) was performed to precisely measure the local changes in tissue stiffness. Each CAF population exhibited heterogeneity in remodeling capabilities, with some patient-derived cells stiffening the matrix and others softening it. Tissue stiffening was mainly attributed to active contraction of the matrix by the cells, whereas the softening was due to enzymatic activity of matrix-cleaving proteins. This measured heterogeneity was lost when the CAFs were cocultured with colorectal cancer cells, as all samples significantly soften the tissue. The interplay between cancer cells and CAFs was critical as it altered any heterogeneity exhibited by CAFs alone.

2.
Mater Today Bio ; 24: 100923, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38226014

RESUMO

Stromal cells are key components of the tumour microenvironment (TME) and their incorporation into 3D engineered tumour-stroma models is essential for tumour mimicry. By engineering tumouroids with distinct tumour and stromal compartments, it has been possible to identify how gene expression of tumour cells is altered and influenced by the presence of different stromal cells. Ameloblastoma is a benign epithelial tumour of the jawbone. In engineered, multi-compartment tumouroids spatial transcriptomics revealed an upregulation of oncogenes in the ameloblastoma transcriptome where osteoblasts were present in the stromal compartment (bone stroma). Where a gingival fibroblast stroma was engineered, the ameloblastoma tumour transcriptome revealed increased matrix remodelling genes. This study provides evidence to show the stromal-specific effect on tumour behaviour and illustrates the importance of engineering biologically relevant stroma for engineered tumour models. Our novel results show that an engineered fibroblast stroma causes the upregulation of matrix remodelling genes in ameloblastoma which directly correlates to measured invasion in the model. In contrast the presence of a bone stroma increases the expression of oncogenes by ameloblastoma cells.

3.
Matrix Biol Plus ; 19-20: 100137, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38020586

RESUMO

Background: Cancer cells remodel their local physical environment through processes of matrix reorganisation, deposition, stiffening and degradation. Urokinase-type plasminogen activator (uPA), which is encoded by the PLAU gene, is an extracellular proteolytic enzyme known to be involved in cancer progression and tumour microenvironment (TME) remodelling. Perturbing uPA therefore has a strong potential as a mechano-based cancer therapy. This work is a bioengineering investigation to validate whether 1) uPA is involved in matrix degradation and 2) preventing matrix degradation by targeting uPA can reduce cancer cell invasion and metastasis. Methods: To this aim, we used an engineered 3D in vitro model, termed the tumouroid, that appropriately mimics the tumour's native biophysical environment (3 kPa). A CRISPR-Cas9 mediated uPA knockout was performed to introduce a loss of function mutation in the gene coding sequence. Subsequently, to validate the translational potential of blocking uPA action, we tested a pharmacological inhibitor, UK-371,801. The changes in matrix stiffness were measured by atomic force microscopy (AFM). Invasion was quantified using images of the tumouroid, obtained after 21 days of culture. Results: We showed that uPA is highly expressed in invasive breast and colorectal cancers, and these invasive cancer cells locally degrade their TME. PLAU (uPA) gene knock-out (KO) completely stopped matrix remodelling and significantly reduced cancer invasion. Many invasive cancer gene markers were also downregulated in the PLAU KO tumouroids. Pharmacological inhibition of uPA showed similarly promising results, where matrix degradation was reduced and so was the cancer invasion. Conclusion: This work supports the role of uPA in matrix degradation. It demonstrates that the invasion of cancer cells was significantly reduced when enzymatic breakdown of the TME matrix was prevented. Collectively, this provides strong evidence of the effectiveness of targeting uPA as a mechano-based cancer therapy.

4.
Mater Today Bio ; 23: 100821, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37868949

RESUMO

The remarkable contractility and force generation ability exhibited by cancer cells empower them to overcome the resistance and steric hindrance presented by a three-dimensional, interconnected matrix. Cancer cells disseminate by actively remodelling and deforming their extracellular matrix (ECM). The process of tumour growth and its ECM remodelling have been extensively studied, but the effect of the cellular tumour microenvironment (TME) has been ignored in most studies that investigated tumour-cell-mediated ECM deformations and realignment. This study reports the integration of stromal cells in spheroid contractility assays that impacts the ECM remodelling and invasion abilities of cancer spheroids. To investigate this, we developed a novel multilayer in vitro assay that incorporates stromal cells and quantifies the contractile deformations that tumour spheroids exert on the ECM. We observed a negative correlation between the spheroid invasion potential and the levels of collagen deformation. The presence of stromal cells significantly increased cancer cell invasiveness and altered the cancer cells' ability to deform and realign collagen gel, due to upregulation of proinflammatory cytokines. Interestingly, this was observed consistently in both metastatic and non-metastatic cancer cells. Our findings contribute to a better understanding of the vital role played by the cellular TME in regulating the invasive outgrowth of cancer cells and underscore the potential of utilising matrix deformation measurements as a biophysical marker for evaluating invasiveness and informing targeted therapeutic opportunities.

5.
J Tissue Eng ; 14: 20417314221145663, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874985

RESUMO

Tissue engineering (TE) is the multi-disciplinary approach to building 3D human tissue equivalents in the laboratory. The advancement of medical sciences and allied scientific disciplines have aspired to engineer human tissues for three decades. To date there is limited use of TE tissues/organs as replacement body parts in humans. This position paper outlines advances in engineering of specific tissues and organs with tissue-specific challenges. This paper outlines the technologies most successful for engineering tissues and key areas of advancement.

6.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835368

RESUMO

Epithelial to mesenchymal transition (EMT) in cancer is the process described where cancer epithelial cells acquire mesenchymal properties which can lead to enhanced invasiveness. Three-dimensional cancer models often lack the relevant and biomimetic microenvironment parameters appropriate to the native tumour microenvironment thought to drive EMT. In this study, HT-29 epithelial colorectal cells were cultivated in different oxygen and collagen concentrations to investigate how these biophysical parameters influenced invasion patterns and EMT. Colorectal HT-29 cells were grown in physiological hypoxia (5% O2) and normoxia (21% O2) in 2D, 3D soft (60 Pa), and 3D stiff (4 kPa) collagen matrices. Physiological hypoxia was sufficient to trigger expression of markers of EMT in the HT-29 cells in 2D by day 7. This is in contrast to a control breast cancer cell line, MDA-MB-231, which expresses a mesenchymal phenotype regardless of the oxygen concentration. In 3D, HT-29 cells invaded more extensively in a stiff matrix environment with corresponding increases in the invasive genes MMP2 and RAE1. This demonstrates that the physiological environment can directly impact HT-29 cells in terms of EMT marker expression and invasion, compared to an established cell line, MDA-MB-231, which has already undergone EMT. This study highlights the importance of the biophysical microenvironment to cancer epithelial cells and how these factors can direct cell behaviour. In particular, that stiffness of the 3D matrix drives greater invasion in HT-29 cells regardless of hypoxia. It is also pertinent that some cell lines (already having undergone EMT) are not as sensitive to the biophysical features of their microenvironment.


Assuntos
Transição Epitelial-Mesenquimal , Microambiente Tumoral , Humanos , Movimento Celular , Colágeno/metabolismo , Transição Epitelial-Mesenquimal/genética , Células HT29 , Hipóxia
7.
ACS Biomater Sci Eng ; 9(7): 3729-3741, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-34081437

RESUMO

BACKGROUND: Tumorigenesis is attributed to the interactions of cancer cells with the tumor microenvironment through both biochemical cues and physical stimuli. Increased matrix deposition and realignment of the collagen fibers are detected by cancer cells, inducing epithelial-to-mesenchymal transition, which in turn stimulates cell motility and invasiveness. METHODS: This review provides an overview of current research on the role of the physical microenvironment in cancer invasion. This was achieved by using a systematic approach and providing meta-analyses. Particular focus was placed on in vitro three-dimensional models of epithelial cancers. We investigated questions such as the effect of matrix stiffening, activation of stromal cells, and identified potential advances in mechano-based therapies. RESULTS: Meta-analysis revealed that 64% of studies report cancer invasion promotion as stiffness increases, while 36% report the opposite. Experimental approaches and data interpretations were varied, each affecting the invasion of cancer differently. Examples are the experimental timeframes used (24 h to 21 days), the type of polymer used (24 types), and choice of cell line (33 cell lines). The stiffness of the 3D matrices varied from 0.5 to 300 kPa and 19% of these matrices' stiffness were outside commonly accepted physiological range. 100% of the studies outside biological stiffness range (above 20 kPa) report that stiffness does not promote cancer invasion. CONCLUSIONS: Taking this analysis into account, we inform on the type of experimental approaches that could be the most relevant and provide what would be a standardized protocol and reporting strategy.


Assuntos
Matriz Extracelular , Neoplasias , Humanos , Matriz Extracelular/metabolismo , Movimento Celular/fisiologia , Linhagem Celular , Microambiente Tumoral
8.
Adv Wound Care (New Rochelle) ; 12(11): 626-643, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-35176896

RESUMO

Significance: The global burden of diabetic wounds, particularly diabetic foot ulcers, continues to have large economic and social impact throughout the world. Current strategies are not sufficient to overcome this burden of disease. Finding newer, more advanced regenerative cell and tissue-based strategies to reduce morbidity remains paramount. Recent Advances: Recent advances in stem cell therapies are discussed. We also highlight the practical issues of translating these advancing technologies into the clinical setting. Critical Issues: We discuss the use of somatic and induced pluripotent stem cells and the stromal vascular fraction, as well as innovations, including the use of 3D bioprinting of skin. We also explore related issues of using regenerative techniques in clinical practice, including the current regulatory landscape and translatability of in vivo research. Future Directions: Advances in stem cell manipulation showcase the best therapeutic resources available to enhance mechanisms of wound healing such as angiogenesis, cell proliferation, and collagen synthesis; potential methods include changing the scaffold microenvironment, including relative oxygen tension, and the use of gene modification and nanotechnology. Secretome engineering, particularly the use of extracellular vesicles, may be another potential cell-derived therapeutic that may enable use of cell-free translational therapy.


Assuntos
Diabetes Mellitus , Pé Diabético , Células-Tronco Pluripotentes Induzidas , Humanos , Cicatrização , Transplante de Células-Tronco , Pé Diabético/terapia , Pele , Diabetes Mellitus/terapia
9.
Adv Healthc Mater ; 12(14): e2201749, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36333907

RESUMO

The stiffness of tumors and their host tissues is much higher than most hydrogels, which are conventionally used to study in vitro cancer progression. The tumoroid assay is an engineered 3D in vitro tumor model that allows investigation of cancer cell invasion in an environment that is biomimetic in terms of extracellular matrix (ECM) composition and stiffness. Using this model, the change in matrix stiffness by epithelial colorectal cancer cells is systematically characterized by atomic force microscopy indentation tests. Less invasive epithelial cancer cells stiffen the tumor microenvironment while highly aggressive epithelial cancer cells show significant softening of the tumor microenvironment. Changes in stiffness are attributed to both cell-generated active forces as well as ECM degradation and remodeling. The degradation is in part attributed to the enzymatic activity of matrix metalloproteinases (MMPs) as demonstrated by the significant expression of MMP-2 and MMP-9 at both gene and protein levels. Targeting MMP activity through broad-spectrum drug inhibition (BB-94) reverses the changes in stiffness and also decreases cancer cell invasion. These results promote the idea of using mechano-based cancer therapies such as MMP inhibition.


Assuntos
Biomimética , Matriz Extracelular , Humanos , Matriz Extracelular/metabolismo , Hidrogéis/metabolismo , Invasividade Neoplásica/patologia , Microambiente Tumoral
10.
Cancers (Basel) ; 16(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38201591

RESUMO

This scoping review evaluated 3D osteosarcoma (OS) models' biomimicry, examining their ability to mimic the tumour microenvironment (TME) and their drug sensitivity. Adhering to PRISMA-ScR guidelines, the systematic search revealed 293 studies, with 70 selected for final analysis. Overall, 64% of 3D OS models were scaffold-based, compared to self-generated spheroid models. Scaffolds generated using native matrix were most common (42%) with collagen I/hydroxyapatite predominating. Both scaffold-based and scaffold-free models were used equally for drug screening. The sensitivity of cancer cells in 3D was reported to be lower than that of cells in 2D in ~90% of the drug screening studies. This correlates with the observed upregulation of drug resistance. OS cells cultured in extracellular matrix (ECM)-mimetic scaffolds and native biomaterials were more resistant than cells in 2D. Co-cultures of OS and stromal cells in 3D models enhanced osteogenic differentiation, ECM remodelling, mineralisation, and angiogenesis, suggesting that tumour-stroma crosstalk promotes disease progression. Seven studies demonstrated selective toxicity of chemotherapeutics towards OS cells while sparing stromal cells, providing useful evidence for developing biomimetic tumour-stroma models to test selective drug toxicity. In conclusion, this review highlights the need to enhance biomimicry in 3D OS models for TME recapitulation, especially in testing novel therapeutics. Future research should explore innovative 3D biomimetic models, biomaterials, and advancements in personalised medicine.

11.
Matrix Biol Plus ; 16: 100125, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36452176

RESUMO

Tumour development and progression is dependent upon tumour cell interaction with the tissue stroma. Bioengineering the tumour-stroma microenvironment (TME) into 3D biomimetic models is crucial to gain insight into tumour cell development and progression pathways and identify therapeutic targets. Ameloblastoma is a benign but locally aggressive epithelial odontogenic neoplasm that mainly occurs in the jawbone and can cause significant morbidity and sometimes death. The molecular mechanisms for ameloblastoma progression are poorly understood. A spatial model recapitulating the tumour and stroma was engineered to show that without a relevant stromal population, tumour invasion is quantitatively decreased. Where a relevant stroma was engineered in dense collagen populated by gingival fibroblasts, enhanced receptor activator of nuclear factor kappa-B ligand (RANKL) expression was observed and histopathological properties, including ameloblastoma tumour islands, developed and were quantified. Using human osteoblasts (bone stroma) further enhanced the biomimicry of ameloblastoma histopathological phenotypes. This work demonstrates the importance of the two key stromal populations, osteoblasts, and gingival fibroblasts, for accurate 3D biomimetic ameloblastoma modelling.

12.
J Tissue Eng ; 13: 20417314221140500, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36582941

RESUMO

Ameloblastoma is a benign, locally invasive epithelial odontogenic neoplasm of the jaw. Treatment of choice is jaw resection, often resulting in significant morbidity. The aim of this study was to recapitulate ameloblastoma in a completely humanised 3D disease model containing ameloblastoma cells, osteoblasts and activated osteoclasts to investigate the RANKL pathway within the ameloblastoma stromal environment and its response to the RANKL antibody denosumab. In vitro bone was engineered by culturing human osteoblasts (hOB) in a biomimetic, dense collagen type I matrix, resulting in extensive mineral deposits by day 21 forming alizarin red positive bone like nodules throughout the 3D model. Activated TRAP + human osteoclasts were confirmed through the differentiation of human CD14+ monocytes after 10 days within the model. Lastly, the ameloblastoma cell lines AM-1 and AM-3 were incorporated into the 3D model. RANKL release was validated through TACE/ADAM17 activation chemically or through hOB co-culture. Denosumab treatment resulted in decreased osteoclast activation in the presence of hOB and ameloblastoma cells. These findings stress the importance of accurately modelling tumour and stromal populations as a preclinical testing platform.

13.
BMC Res Notes ; 15(1): 310, 2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153566

RESUMO

OBJECTIVE: Engineering bone in 3D is important for both regenerative medicine purposes and for the development of accurate in vitro models of bone tissue. The changing material stiffness of bone tissue had not yet been monitored throughout the process of mineralisation and bone nodule formation by osteoblasts either during in vitro engineering or in development perspective. RESULTS: Within this short research note, stiffness changes (Young's modulus) during in vitro bone formation by primary osteoblasts in dense collagen scaffolds were monitored using atomic force microscopy. Data analysis revealed significant stiffening of 3D bone cultures at day 5 and 8 that was correlated with the onset of mineral deposition (p < 0.00005).


Assuntos
Osteogênese , Engenharia Tecidual , Colágeno , Osteoblastos , Alicerces Teciduais
14.
iScience ; 25(4): 104059, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35345460

RESUMO

The biophysical microenvironment of the cell is being increasingly used to control cell signaling and to direct cell function. Herein, engineered 3D tuneable biomimetic scaffolds are used to control the cell microenvironment of Adipose-derived Mesenchymal Stromal Cells (AMSC), which exhibit a collagen density-specific profile for early and late stage bone cell lineage status. Cell potency was enhanced when AMSCs were cultured within low collagen density environments in hypoxic conditions. A transitional culture containing varied collagen densities in hypoxic conditions directed differential cell fate responses. The early skeletal progenitor identity (PDPN+CD146-CD73+CD164+) was rescued in the cells which migrated into low collagen density gels, with cells continuously exposed to the high collagen density gels displaying a transitioned bone-cartilage-stromal phenotype (PDPN+CD146+CD73-CD164-). This study uncovers the significant contributions of the physical and physiological cell environment and highlights a chemically independent methodology for reprogramming and isolating skeletal progenitor cells from an adipose-derived cell population.

15.
J Cell Commun Signal ; 16(4): 637-648, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35102500

RESUMO

Recent advancements in 3D in vitro culture have allowed for the development of cancer tissue models which accurately recapitulate the tumour microenvironment. Consequently, there has been increased innovation in therapeutic drug screening. While organoid cultures show great potential, they are limited by the time scale of their growth in vitro and the dependence upon commercial matrices, such as Matrigel, which do not allow for manipulations of their composition or mechanical properties. Here, we show a straightforward approach for the isolation and culture of primary human renal carcinoma cells and matched non-affected kidney. This approach does not require any specific selection for cancer cells, and allows for their direct culture in amenable 3D collagen-based matrices, with the preservation of cancer cells as confirmed by NGS sequencing. This method allows for culture of patient-derived cancer cells in 3D microenvironment, which can be used for downstream experimentation such as investigation of cell-matrix interaction or drug screening.

16.
Sci Rep ; 11(1): 24088, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916549

RESUMO

Ameloblastoma is a benign, epithelial cancer of the jawbone, which causes bone resorption and disfigurement to patients affected. The interaction of ameloblastoma with its tumour stroma drives invasion and progression. We used stiff collagen matrices to engineer active bone forming stroma, to probe the interaction of ameloblastoma with its native tumour bone microenvironment. This bone-stroma was assessed by nano-CT, transmission electron microscopy (TEM), Raman spectroscopy and gene analysis. Furthermore, we investigated gene correlation between bone forming 3D bone stroma and ameloblastoma introduced 3D bone stroma. Ameloblastoma cells increased expression of MMP-2 and -9 and RANK temporally in 3D compared to 2D. Our 3D biomimetic model formed bone nodules of an average surface area of 0.1 mm2 and average height of 92.37 [Formula: see text] 7.96 µm over 21 days. We demonstrate a woven bone phenotype with distinct mineral and matrix components and increased expression of bone formation genes in our engineered bone. Introducing ameloblastoma to the bone stroma, completely inhibited bone formation, in a spatially specific manner. Multivariate gene analysis showed that ameloblastoma cells downregulate bone formation genes such as RUNX2. Through the development of a comprehensive bone stroma, we show that an ameloblastoma tumour mass prevents osteoblasts from forming new bone nodules and severely restricted the growth of existing bone nodules. We have identified potential pathways for this inhibition. More critically, we present novel findings on the interaction of stromal osteoblasts with ameloblastoma.


Assuntos
Ameloblastoma/fisiopatologia , Ameloblastoma/terapia , Neoplasias Maxilomandibulares/fisiopatologia , Neoplasias Maxilomandibulares/terapia , Osteogênese , Células Estromais , Engenharia Tecidual/métodos , Ameloblastoma/complicações , Ameloblastoma/genética , Animais , Reabsorção Óssea/etiologia , Reabsorção Óssea/terapia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Expressão Gênica , Humanos , Neoplasias Maxilomandibulares/complicações , Neoplasias Maxilomandibulares/genética , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Invasividade Neoplásica , Osteoblastos/fisiologia , Ligante RANK/genética , Ligante RANK/metabolismo , Ratos , Células Tumorais Cultivadas , Microambiente Tumoral
17.
Cancers (Basel) ; 13(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809554

RESUMO

The development of biomimetic, human tissue models is recognized as being an important step for transitioning in vitro research findings to the native in vivo response. Oftentimes, 2D models lack the necessary complexity to truly recapitulate cellular responses. The introduction of physiological features into 3D models informs us of how each component feature alters specific cellular response. We conducted a systematic review of research papers where the focus was the introduction of key biomimetic features into in vitro models of cancer, including 3D culture and hypoxia. We analysed outcomes from these and compiled our findings into distinct groupings to ascertain which biomimetic parameters correlated with specific responses. We found a number of biomimetic features which primed cancer cells to respond in a manner which matched in vivo response.

18.
Front Bioeng Biotechnol ; 9: 660502, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912551

RESUMO

The use of tissue-engineered 3D models of cancer has grown in popularity with recent advances in the field of cancer research. 3D models are inherently more biomimetic compared to 2D cell monolayers cultured on tissue-culture plastic. Nevertheless 3D models still lack the cellular and matrix complexity of native tissues. This review explores different 3D models currently used, outlining their benefits and limitations. Specifically, this review focuses on stiffness and collagen density, compartmentalization, tumor-stroma cell population and extracellular matrix composition. Furthermore, this review explores the methods utilized in different models to directly measure cancer invasion and growth. Of the models evaluated, with PDX and in vivo as a relative "gold standard", tumoroids were deemed as comparable 3D cancer models with a high degree of biomimicry, in terms of stiffness, collagen density and the ability to compartmentalize the tumor and stroma. Future 3D models for different cancer types are proposed in order to improve the biomimicry of cancer models used for studying disease progression.

19.
Int J Mol Sci ; 22(8)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924238

RESUMO

Pancreatic cancer is a unique cancer in that up to 90% of its tumour mass is composed of a hypovascular and fibrotic stroma. This makes it extremely difficult for chemotherapies to be delivered into the core of the cancer mass. We tissue-engineered a biomimetic 3D pancreatic cancer ("tumouroid") model comprised of a central artificial cancer mass (ACM), containing MIA Paca-2 cells, surrounded by a fibrotic stromal compartment. This stromal compartment had a higher concentration of collagen type I, fibronectin, laminin, and hyaluronic acid (HA) than the ACM. The incorporation of HA was validated with alcian blue staining. Response to paclitaxel was determined in 2D MIA Paca-2 cell cultures, the ACMs alone, and in simple and complex tumouroids, in order to demonstrate drug sensitivity within pancreatic tumouroids of increasing complexity. The results showed that MIA Paca-2 cells grew into the complex stroma and invaded as cell clusters with a maximum distance of 363.7 µm by day 21. In terms of drug response, the IC50 for paclitaxel for MIA Paca-2 cells increased from 0.819 nM in 2D to 3.02 nM in ACMs and to 5.87 nM and 3.803 nM in simple and complex tumouroids respectively, indicating that drug penetration may be significantly reduced in the latter. The results demonstrate the need for biomimetic models during initial drug testing and evaluation.


Assuntos
Paclitaxel/farmacologia , Neoplasias Pancreáticas/patologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Engenharia Tecidual , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Imunofluorescência , Humanos , Imuno-Histoquímica , Paclitaxel/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Esferoides Celulares , Células Estromais/patologia , Células Tumorais Cultivadas
20.
Int J Mol Sci ; 22(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924614

RESUMO

The physiological O2 microenvironment of mesenchymal stem cells (MSCs) and osteoblasts and the dimensionality of a substrate are known to be important in regulating cell phenotype and function. By providing the physiologically normoxic environments of bone marrow (5%) and matrix (12%), we assessed their potential to maintain stemness, induce osteogenic differentiation, and enhance the material properties in the micropatterned collagen/silk fibroin scaffolds that were produced in 2D or 3D. Expression of osterix (OSX) and vascular endothelial growth factor A (VEGFA) was significantly enhanced in the 3D scaffold in all oxygen environments. At 21% O2, OSX and VEGFA expressions in the 3D scaffold were respectively 13,200 and 270 times higher than those of the 2D scaffold. Markers for assessing stemness were significantly more pronounced on tissue culture polystyrene and 2D scaffold incubated at 5% O2. At 21% O2, we measured significant increases in ultimate tensile strength (p < 0.0001) and Young's modulus (p = 0.003) of the 3D scaffold compared to the 2D scaffold, whilst 5% O2 hindered the positive effect of cell seeding on tensile strength. In conclusion, we demonstrated that the 3D culture of MSCs in collagen/silk fibroin scaffolds provided biomimetic cues for bone progenitor cells toward differentiation and enhanced the tensile mechanical properties.


Assuntos
Materiais Biomiméticos/farmacologia , Medula Óssea/metabolismo , Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Oxigênio/metabolismo , Alicerces Teciduais/química , Animais , Biomarcadores/metabolismo , Bombyx , Medula Óssea/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/ultraestrutura , Neovascularização Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Pressão Parcial , Ratos Sprague-Dawley , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA