Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
EBioMedicine ; 108: 105328, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39278108

RESUMO

BACKGROUND: Fuchs endothelial corneal dystrophy (FECD) is the most common repeat-mediated disease in humans. It exclusively affects corneal endothelial cells (CECs), with ≤81% of cases associated with an intronic TCF4 triplet repeat (CTG18.1). Here, we utilise optical genome mapping (OGM) to investigate CTG18.1 tissue-specific instability to gain mechanistic insights. METHODS: We applied OGM to a diverse range of genomic DNAs (gDNAs) from patients with FECD and controls (n = 43); CECs, leukocytes and fibroblasts. A bioinformatics pipeline was developed to robustly interrogate CTG18.1-spanning DNA molecules. All results were compared with conventional polymerase chain reaction-based fragment analysis. FINDINGS: Analysis of bio-samples revealed that expanded CTG18.1 alleles behave dynamically, regardless of cell-type origin. However, clusters of CTG18.1 molecules, encompassing ∼1800-11,900 repeats, were exclusively detected in diseased CECs from expansion-positive cases. Additionally, both progenitor allele size and age were found to influence the level of leukocyte-specific CTG18.1 instability. INTERPRETATION: OGM is a powerful tool for analysing somatic instability of repeat loci and reveals here the extreme levels of CTG18.1 instability occurring within diseased CECs underpinning FECD pathophysiology, opening up new therapeutic avenues for FECD. Furthermore, these findings highlight the broader translational utility of FECD as a model for developing therapeutic strategies for rarer diseases similarly attributed to somatically unstable repeats. FUNDING: UK Research and Innovation, Moorfields Eye Charity, Fight for Sight, Medical Research Council, NIHR BRC at Moorfields Eye Hospital and UCL Institute of Ophthalmology, Grantová Agentura Ceské Republiky, Univerzita Karlova v Praze, the National Brain Appeal's Innovation Fund and Rosetrees Trust.


Assuntos
Distrofia Endotelial de Fuchs , Fator de Transcrição 4 , Humanos , Fator de Transcrição 4/genética , Fator de Transcrição 4/metabolismo , Distrofia Endotelial de Fuchs/genética , Distrofia Endotelial de Fuchs/patologia , Mapeamento Cromossômico , Alelos , Especificidade de Órgãos/genética , Expansão das Repetições de Trinucleotídeos , Masculino , Instabilidade Genômica , Feminino , Repetições de Trinucleotídeos/genética , Pessoa de Meia-Idade , Idoso
2.
Eur J Hum Genet ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169229

RESUMO

Corneal dystrophies are phenotypically and genetically heterogeneous, often resulting in visual impairment caused by corneal opacification. We investigated the genetic cause of an autosomal dominant corneal stromal dystrophy in a pedigree with eight affected individuals in three generations. Affected individuals had diffuse central stromal opacity, with reduced visual acuity in older family members. Histopathology of affected cornea tissue removed during surgery revealed mild stromal textural alterations with alcianophilic deposits. Whole genome sequence data were generated for four affected individuals. No rare variants (MAF < 0.001) were identified in established corneal dystrophy genes. However, a novel heterozygous missense variant in exon 4 of SPARCL1, NM_004684: c.334G > A; p.(Glu112Lys), which is predicted to be damaging, segregated with disease. SPARC-like protein 1 (SPARCL1) is a secreted matricellular protein involved in cell migration, cell adhesion, tissue repair, and remodelling. Interestingly, SPARCL1 has been shown to regulate decorin. Heterozygous variants in DCN, encoding decorin, cause autosomal dominant congenital stromal corneal dystrophy, suggesting a common pathogenic pathway. Therefore, we performed immunohistochemistry to compare SPARCL1 and decorin localisation in corneal tissue from an affected family member and an unaffected control. Strikingly, the level of decorin was significantly decreased in the corneal stroma of the affected tissue, and SPARCL1 appeared to be retained in the epithelium. In summary, we describe a novel autosomal dominant corneal stromal dystrophy associated with a missense variant in SPARCL1, extending the phenotypic and genetic heterogeneity of inherited corneal disease.

3.
PLoS Genet ; 20(5): e1011230, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38713708

RESUMO

Fuchs endothelial corneal dystrophy (FECD) is an age-related cause of vision loss, and the most common repeat expansion-mediated disease in humans characterised to date. Up to 80% of European FECD cases have been attributed to expansion of a non-coding CTG repeat element (termed CTG18.1) located within the ubiquitously expressed transcription factor encoding gene, TCF4. The non-coding nature of the repeat and the transcriptomic complexity of TCF4 have made it extremely challenging to experimentally decipher the molecular mechanisms underlying this disease. Here we comprehensively describe CTG18.1 expansion-driven molecular components of disease within primary patient-derived corneal endothelial cells (CECs), generated from a large cohort of individuals with CTG18.1-expanded (Exp+) and CTG 18.1-independent (Exp-) FECD. We employ long-read, short-read, and spatial transcriptomic techniques to interrogate expansion-specific transcriptomic biomarkers. Interrogation of long-read sequencing and alternative splicing analysis of short-read transcriptomic data together reveals the global extent of altered splicing occurring within Exp+ FECD, and unique transcripts associated with CTG18.1-expansions. Similarly, differential gene expression analysis highlights the total transcriptomic consequences of Exp+ FECD within CECs. Furthermore, differential exon usage, pathway enrichment and spatial transcriptomics reveal TCF4 isoform ratio skewing solely in Exp+ FECD with potential downstream functional consequences. Lastly, exome data from 134 Exp- FECD cases identified rare (minor allele frequency <0.005) and potentially deleterious (CADD>15) TCF4 variants in 7/134 FECD Exp- cases, suggesting that TCF4 variants independent of CTG18.1 may increase FECD risk. In summary, our study supports the hypothesis that at least two distinct pathogenic mechanisms, RNA toxicity and TCF4 isoform-specific dysregulation, both underpin the pathophysiology of FECD. We anticipate these data will inform and guide the development of translational interventions for this common triplet-repeat mediated disease.


Assuntos
Distrofia Endotelial de Fuchs , Fator de Transcrição 4 , Expansão das Repetições de Trinucleotídeos , Humanos , Masculino , Processamento Alternativo/genética , Células Endoteliais/metabolismo , Endotélio Corneano/metabolismo , Endotélio Corneano/patologia , Distrofia Endotelial de Fuchs/genética , Fator de Transcrição 4/genética , Fator de Transcrição 4/metabolismo , Transcriptoma/genética , Expansão das Repetições de Trinucleotídeos/genética , Feminino
4.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38674104

RESUMO

ABCA4-related retinopathy is the most common inherited Mendelian eye disorder worldwide, caused by biallelic variants in the ATP-binding cassette transporter ABCA4. To date, over 2200 ABCA4 variants have been identified, including missense, nonsense, indels, splice site and deep intronic defects. Notably, more than 60% are missense variants that can lead to protein misfolding, mistrafficking and degradation. Currently no approved therapies target ABCA4. In this study, we demonstrate that ABCA4 misfolding variants are temperature-sensitive and reduced temperature growth (30 °C) improves their traffic to the plasma membrane, suggesting the folding of these variants could be rescuable. Consequently, an in vitro platform was developed for the rapid and robust detection of ABCA4 traffic to the plasma membrane in transiently transfected cells. The system was used to assess selected candidate small molecules that were reported to improve the folding or traffic of other ABC transporters. Two candidates, 4-PBA and AICAR, were identified and validated for their ability to enhance both wild-type ABCA4 and variant trafficking to the cell surface in cell culture. We envision that this platform could serve as a primary screen for more sophisticated in vitro testing, enabling the discovery of breakthrough agents to rescue ABCA4 protein defects and mitigate ABCA4-related retinopathy.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Dobramento de Proteína , Transporte Proteico , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Humanos , Dobramento de Proteína/efeitos dos fármacos , Células HEK293 , Membrana Celular/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia
5.
Prog Retin Eye Res ; 100: 101248, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38369182

RESUMO

Blindness poses a growing global challenge, with approximately 26% of cases attributed to degenerative retinal diseases. While gene therapy, optogenetic tools, photosensitive switches, and retinal prostheses offer hope for vision restoration, these high-cost therapies will benefit few patients. Understanding retinal diseases is therefore key to advance effective treatments, requiring in vitro models replicating pathology and allowing quantitative assessments for drug discovery. Pluripotent stem cells (PSCs) provide a unique solution given their limitless supply and ability to differentiate into light-responsive retinal tissues encompassing all cell types. This review focuses on the history and current state of photoreceptor and retinal pigment epithelium (RPE) cell generation from PSCs. We explore the applications of this technology in disease modelling, experimental therapy testing, biomarker identification, and toxicity studies. We consider challenges in scalability, standardisation, and reproducibility, and stress the importance of incorporating vasculature and immune cells into retinal organoids. We advocate for high-throughput automation in data acquisition and analyses and underscore the value of advanced micro-physiological systems that fully capture the interactions between the neural retina, RPE, and choriocapillaris.


Assuntos
Células-Tronco Pluripotentes , Doenças Retinianas , Animais , Humanos , Diferenciação Celular/fisiologia , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/patologia , Epitélio Pigmentado da Retina/patologia
6.
Mol Ther ; 32(3): 837-851, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38243599

RESUMO

The high allelic heterogeneity in Stargardt disease (STGD1) complicates the design of intervention strategies. A significant proportion of pathogenic intronic ABCA4 variants alters the pre-mRNA splicing process. Antisense oligonucleotides (AONs) are an attractive yet mutation-specific therapeutic strategy to restore these splicing defects. In this study, we experimentally assessed the potential of a splicing modulation therapy to target multiple intronic ABCA4 variants. AONs were inserted into U7snRNA gene cassettes and tested in midigene-based splice assays. Five potent antisense sequences were selected to generate a multiple U7snRNA cassette construct, and this combination vector showed substantial rescue of all of the splicing defects. Therefore, the combination cassette was used for viral synthesis and assessment in patient-derived photoreceptor precursor cells (PPCs). Simultaneous delivery of several modified U7snRNAs through a single AAV, however, did not show substantial splicing correction, probably due to suboptimal transduction efficiency in PPCs and/or a heterogeneous viral population containing incomplete AAV genomes. Overall, these data demonstrate the potential of the U7snRNA system to rescue multiple splicing defects, but also suggest that AAV-associated challenges are still a limiting step, underscoring the need for further optimization before implementing this strategy as a potential treatment for STGD1.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Splicing de RNA , Humanos , Transportadores de Cassetes de Ligação de ATP/genética , Doença de Stargardt/genética , Mutação , Células Fotorreceptoras
7.
Am J Ophthalmol ; 261: 112-120, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37977507

RESUMO

PURPOSE: RP2-associated retinopathy typically causes severe early onset retinitis pigmentosa (RP) in affected males. However, there is a scarcity of reports describing the clinical phenotype of female carriers. We tested the hypothesis that RP2 variants manifest in female carriers with a range of functional and anatomic characteristics. DESIGN: Retrospective case series. METHODS: Females with disease-causing variants in RP2 were identified from investigation of pedigrees affected by RP2 retinopathy. All case notes and results of molecular genetic testing, retinal imaging (fundus autofluorescence imaging, optical coherence tomography (OCT)), and electrophysiology were reviewed. RESULTS: Forty pedigrees were investigated. Twenty-nine pedigrees had obligate carriers or molecularly confirmed female members with recorded relevant history and/or examination. For 8 pedigrees, data were available only from history, with patients reporting affected female relatives with RP in 4 cases and unaffected female relatives in the other 4 cases. Twenty-seven females from 21 pedigrees were examined by a retinal genetics specialist. Twenty-three patients (85%) reported no complaints and had normal vision and 4 patients had RP-associated complaints (15%). Eight patients had normal fundus examination (30%), 10 had a tapetal-like reflex (TLR; 37%), 5 had scattered peripheral pigmentation (19%), and the 4 symptomatic patients had fundus findings compatible with RP (15%). All asymptomatic patients with normal fundus, TLR, or asymptomatic pigmentary changes had a continuous ellipsoid zone on OCT when available. The electroretinograms revealed mild to severe photoreceptor dysfunction in 9 of 11 subjects, often asymmetrical, including 5 with pattern electroretinogram evidence of symmetrical (n = 4) or unilateral (n = 1 subject) macular dysfunction. CONCLUSIONS: Most carriers were asymptomatic, exhibiting subclinical characteristics such as TLR and pigmentary changes. However, female carriers of RP2 variants can manifest RP. Family history of affected females with RP does not exclude X-linked disease. The phenotypic spectrum as described herein has prognostic and counselling implications for RP2 carriers and patients.

8.
Cells ; 12(12)2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37371046

RESUMO

The photoreceptor outer segment is a highly specialized primary cilium that is essential for phototransduction and vision. Biallelic pathogenic variants in the cilia-associated gene CEP290 cause non-syndromic Leber congenital amaurosis 10 (LCA10) and syndromic diseases, where the retina is also affected. While RNA antisense oligonucleotides and gene editing are potential treatment options for the common deep intronic variant c.2991+1655A>G in CEP290, there is a need for variant-independent approaches that could be applied to a broader spectrum of ciliopathies. Here, we generated several distinct human models of CEP290-related retinal disease and investigated the effects of the flavonoid eupatilin as a potential treatment. Eupatilin improved cilium formation and length in CEP290 LCA10 patient-derived fibroblasts, in gene-edited CEP290 knockout (CEP290 KO) RPE1 cells, and in both CEP290 LCA10 and CEP290 KO iPSCs-derived retinal organoids. Furthermore, eupatilin reduced rhodopsin retention in the outer nuclear layer of CEP290 LCA10 retinal organoids. Eupatilin altered gene transcription in retinal organoids by modulating the expression of rhodopsin and by targeting cilia and synaptic plasticity pathways. This work sheds light on the mechanism of action of eupatilin and supports its potential as a variant-independent approach for CEP290-associated ciliopathies.


Assuntos
Cílios , Ciliopatias , Humanos , Cílios/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Rodopsina/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Flavonoides , Ciliopatias/tratamento farmacológico , Ciliopatias/genética , Ciliopatias/metabolismo
9.
Ann Glob Health ; 89(1): 38, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37273490

RESUMO

Background: The ESSENCE on Health Research initiative established a Working Group on Review of Investments in 2018 to improve coordination and collaboration among funders of health research capacity strengthening. The Working Group comprises more than a dozen ESSENCE members, including diverse representation by geography, country income level, the public sector, and philanthropy. Objective: The overall goal of the Working Group is increased research on national health priorities as well as improved pandemic preparedness, and, ultimately, fewer countries with very limited research capacity. Methods: We developed a basic set of metrics for national health research capacity, assessed different models of coordination and collaboration, took a deeper dive into eight countries to characterize their national research capacity, and began to identify opportunities to better coordinate our investments. In this article, we summarize the presentations, discussions, and outcomes of our second annual (virtual) meeting, which had more than 100 participants representing funders, researchers, and other stakeholders from higher- and lower-income countries worldwide. Findings and conclusions: Presentations on the first day included the keynote speaker, Dr. Soumya Swaminathan, chief scientist of the World Health Organization (WHO), and updates on data and metrics for research capacity, which are critical to establish targets, road maps, and budgets. The second day focused on improving collaboration and coordination among funders and other stakeholders, the potential return on investment for health research, ongoing work to increase coordination at the country level, and examples of research capacity strengthening efforts in diverse health research areas from around the world. We concluded that an intentional data- and metric-driven approach to health research capacity strengthening, emphasizing coordination among funders, local leadership, and equitable partnerships and allocation of resources, will enhance the health systems of resource-poor countries as well as the world's pandemic preparedness.


Assuntos
Benchmarking , Prioridades em Saúde , Humanos , Fortalecimento Institucional
10.
Mol Ther Methods Clin Dev ; 29: 522-531, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37305852

RESUMO

Mutations in the lebercilin-encoding gene LCA5 cause one of the most severe forms of Leber congenital amaurosis, an early-onset retinal disease that results in severe visual impairment. Here, we report on the generation of a patient-specific cellular model to study LCA5-associated retinal disease. CRISPR-Cas9 technology was used to correct a homozygous nonsense variant in LCA5 (c.835C>T; p.Q279∗) in patient-derived induced pluripotent stem cells (iPSCs). The absence of off-target editing in gene-corrected (isogenic) control iPSCs was demonstrated by whole-genome sequencing. We differentiated the patient, gene-corrected, and unrelated control iPSCs into three-dimensional retina-like cells, so-called retinal organoids. We observed opsin and rhodopsin mislocalization to the outer nuclear layer in patient-derived but not in the gene-corrected or unrelated control organoids. We also confirmed the rescue of lebercilin expression and localization along the ciliary axoneme within the gene-corrected organoids. Here, we show the potential of combining precise single-nucleotide gene editing with the iPSC-derived retinal organoid system for the generation of a cellular model of early-onset retinal disease.

12.
Mol Ther Nucleic Acids ; 31: 674-688, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36910710

RESUMO

Stargardt disease type 1 (STGD1) is the most common hereditary form of maculopathy and remains untreatable. STGD1 is caused by biallelic variants in the ABCA4 gene, which encodes the ATP-binding cassette (type 4) protein (ABCA4) that clears toxic byproducts of the visual cycle. The c.5461-10T>C p.[Thr1821Aspfs∗6,Thr1821Valfs∗13] variant is the most common severe disease-associated variant, and leads to exon skipping and out-of-frame ABCA4 transcripts that prevent translation of functional ABCA4 protein. Homozygous individuals typically display early onset STGD1 and are legally blind by early adulthood. Here, we applied antisense oligonucleotides (AONs) to promote exon inclusion and restore wild-type RNA splicing of ABCA4 c.5461-10T>C. The effect of AONs was first investigated in vitro using an ABCA4 midigene model. Subsequently, the best performing AONs were administered to homozygous c.5461-10T>C 3D human retinal organoids. Isoform-specific digital polymerase chain reaction revealed a significant increase in correctly spliced transcripts after treatment with the lead AON, QR-1011, up to 53% correct transcripts at a 3 µM dose. Furthermore, western blot and immunohistochemistry analyses identified restoration of ABCA4 protein after treatment. Collectively, we identified QR-1011 as a potent splice-correcting AON and a possible therapeutic intervention for patients harboring the severe ABCA4 c.5461-10T>C variant.

13.
Ophthalmology ; 130(4): 413-422, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36423731

RESUMO

PURPOSE: To review and describe in detail the clinical course, functional and anatomic characteristics of RP2-associated retinal degeneration. DESIGN: Retrospective case series. PARTICIPANTS: Male participants with disease-causing variants in the RP2 gene. METHODS: Review of all case notes and results of molecular genetic testing, retinal imaging (fundus autofluorescence [FAF] imaging, OCT), and electrophysiology assessment. MAIN OUTCOME MEASURES: Molecular genetic testing, clinical findings including best-corrected visual acuity (BCVA), qualitative and quantitative retinal imaging analysis, and electrophysiology parameters. RESULTS: Fifty-four molecularly confirmed patients were identified from 38 pedigrees. Twenty-eight disease-causing variants were identified, with 20 not previously clinically characterized. Fifty-three patients (98.1%) presented with retinitis pigmentosa. The mean age of onset (range ± standard deviation [SD]) was 9.6 years (1-57 ± 9.2 years). Forty-four patients (91.7%) had childhood-onset disease, with mean age of onset of 7.6 years. The most common first symptom was night blindness (68.8%). Mean BCVA (range ± SD) was 0.91 logarithm of the minimum angle of resolution (logMAR) (0-2.7 ± 0.80) and 0.94 logMAR (0-2.7 ± 0.78) for right and left eyes, respectively. On the basis of the World Health Organization visual impairment criteria, 18 patients (34%) had low vision. The majority (17/22) showed electroretinogram (ERG) evidence of a rod-cone dystrophy. Pattern ERG P50 was undetectable in all but 2 patients. A range of FAF findings was observed, from normal to advanced atrophy. There were no statistically significant differences between right and left eyes for ellipsoid zone width (EZW) and outer nuclear layer (ONL) thickness. The mean annual rate of EZW loss was 219 µm/year, and the mean annual decrease in ONL thickness was 4.93 µm/year. No patient with childhood-onset disease had an identifiable ellipsoid zone (EZ) after the age of 26 years at baseline or follow-up. Four patients had adulthood-onset disease and a less severe phenotype. CONCLUSIONS: This study details the clinical phenotype of RP2 retinopathy in a large cohort. The majority presented with early-onset severe retinal degeneration, with early macular involvement and complete loss of the foveal photoreceptor layer by the third decade of life. Full-field ERGs revealed rod-cone dystrophy in the vast majority, but with generalized (peripheral) cone system involvement of widely varying severity in the first 2 decades of life. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found after the references.


Assuntos
Distrofias de Cones e Bastonetes , Degeneração Retiniana , Humanos , Masculino , Distrofias de Cones e Bastonetes/diagnóstico , Distrofias de Cones e Bastonetes/genética , Eletrorretinografia , Proteínas de Ligação ao GTP , Proteínas de Membrana , Biologia Molecular , Retina , Degeneração Retiniana/diagnóstico , Degeneração Retiniana/genética , Estudos Retrospectivos , Tomografia de Coerência Óptica/métodos , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade
14.
Hum Mol Genet ; 32(4): 595-607, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36084042

RESUMO

The purpose of this paper is to identify likely pathogenic non-coding variants in inherited retinal dystrophy (IRD) genes, using genome sequencing (GS). Patients with IRD were recruited to the study and underwent comprehensive ophthalmological evaluation and GS. The results of GS were investigated through virtual gene panel analysis, and plausible pathogenic variants and clinical phenotype evaluated by the multidisciplinary team (MDT) discussion. For unsolved patients in whom a specific gene was suspected to harbor a missed pathogenic variant, targeted re-analysis of non-coding regions was performed on GS data. Candidate variants were functionally tested by messenger RNA analysis, minigene or luciferase reporter assays. Previously unreported, likely pathogenic, non-coding variants in 7 genes (PRPF31, NDP, IFT140, CRB1, USH2A, BBS10 and GUCY2D), were identified in 11 patients. These were shown to lead to mis-splicing (PRPF31, IFT140, CRB1 and USH2A) or altered transcription levels (BBS10 and GUCY2D). MDT-led, phenotype-driven, non-coding variant re-analysis of GS is effective in identifying the missing causative alleles.


Assuntos
Distrofias Retinianas , Humanos , Mutação , Linhagem , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/genética , Sequenciamento Completo do Genoma , Equipe de Assistência ao Paciente , Análise Mutacional de DNA/métodos , Proteínas do Olho/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética
15.
Nat Commun ; 13(1): 6595, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329026

RESUMO

Motile and non-motile cilia are associated with mutually-exclusive genetic disorders. Motile cilia propel sperm or extracellular fluids, and their dysfunction causes primary ciliary dyskinesia. Non-motile cilia serve as sensory/signalling antennae on most cell types, and their disruption causes single-organ ciliopathies such as retinopathies or multi-system syndromes. CFAP20 is a ciliopathy candidate known to modulate motile cilia in unicellular eukaryotes. We demonstrate that in zebrafish, cfap20 is required for motile cilia function, and in C. elegans, CFAP-20 maintains the structural integrity of non-motile cilia inner junctions, influencing sensory-dependent signalling and development. Human patients and zebrafish with CFAP20 mutations both exhibit retinal dystrophy. Hence, CFAP20 functions within a structural/functional hub centered on the inner junction that is shared between motile and non-motile cilia, and is distinct from other ciliopathy-associated domains or macromolecular complexes. Our findings suggest an uncharacterised pathomechanism for retinal dystrophy, and potentially for motile and non-motile ciliopathies in general.


Assuntos
Ciliopatias , Distrofias Retinianas , Masculino , Animais , Humanos , Cílios/metabolismo , Peixe-Zebra/genética , Caenorhabditis elegans/metabolismo , Sêmen/metabolismo , Ciliopatias/genética , Ciliopatias/metabolismo , Proteínas/metabolismo
16.
Stem Cell Reports ; 17(10): 2187-2202, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36084639

RESUMO

Leber congenital amaurosis type 4 (LCA4), caused by AIPL1 mutations, is characterized by severe sight impairment in infancy and rapidly progressing degeneration of photoreceptor cells. We generated retinal organoids using induced pluripotent stem cells (iPSCs) from renal epithelial cells obtained from four children with AIPL1 nonsense mutations. iPSC-derived photoreceptors exhibited the molecular hallmarks of LCA4, including undetectable AIPL1 and rod cyclic guanosine monophosphate (cGMP) phosphodiesterase (PDE6) compared with control or CRISPR-corrected organoids. Increased levels of cGMP were detected. The translational readthrough-inducing drug (TRID) PTC124 was investigated as a potential therapeutic agent. LCA4 retinal organoids exhibited low levels of rescue of full-length AIPL1. However, this was insufficient to fully restore PDE6 in photoreceptors and reduce cGMP. LCA4 retinal organoids are a valuable platform for in vitro investigation of novel therapeutic agents.


Assuntos
Amaurose Congênita de Leber , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Transporte/genética , Criança , Códon sem Sentido , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Guanosina Monofosfato , Humanos , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/terapia , Organoides/metabolismo , Oxidiazóis , Diester Fosfórico Hidrolases/genética
17.
Hum Mol Genet ; 31(20): 3478-3493, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-35652445

RESUMO

Autosomal dominant optic atrophy (DOA) is the most common inherited optic neuropathy, characterized by the preferential loss of retinal ganglion cells (RGCs), resulting in optic nerve degeneration and progressive bilateral central vision loss. More than 60% of genetically confirmed patients with DOA carry variants in the nuclear OPA1 gene, which encodes for a ubiquitously expressed, mitochondrial GTPase protein. OPA1 has diverse functions within the mitochondrial network, facilitating inner membrane fusion and cristae modelling, regulating mitochondrial DNA maintenance and coordinating mitochondrial bioenergetics. There are currently no licensed disease-modifying therapies for DOA and the disease mechanisms driving RGC degeneration are poorly understood. Here, we describe the generation of isogenic, heterozygous OPA1 null induced pluripotent stem cell (iPSC) (OPA1+/-) through clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing of a control cell line, in conjunction with the generation of DOA patient-derived iPSC carrying OPA1 variants, namely, the c.2708_2711delTTAG variant (DOA iPSC), and previously reported missense variant iPSC line (c.1334G>A, DOA plus [DOA]+ iPSC) and CRISPR/Cas9 corrected controls. A two-dimensional (2D) differentiation protocol was used to study the effect of OPA1 variants on iPSC-RGC differentiation and mitochondrial function. OPA1+/-, DOA and DOA+ iPSC showed no differentiation deficit compared to control iPSC lines, exhibiting comparable expression of all relevant markers at each stage of differentiation. OPA1+/- and OPA1 variant iPSC-RGCs exhibited impaired mitochondrial homeostasis, with reduced bioenergetic output and compromised mitochondrial DNA maintenance. These data highlight mitochondrial deficits associated with OPA1 dysfunction in human iPSC-RGCs, and establish a platform to study disease mechanisms that contribute to RGC loss in DOA, as well as potential therapeutic interventions.


Assuntos
Células-Tronco Pluripotentes Induzidas , Atrofia Óptica Autossômica Dominante , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Atrofia Óptica Autossômica Dominante/genética , Células Ganglionares da Retina/metabolismo
18.
Eur J Hum Genet ; 30(7): 848-855, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35534703

RESUMO

Autosomal dominant optic atrophy (DOA) is an inherited optic neuropathy that results in progressive, bilateral visual acuity loss and field defects. OPA1 is the causative gene in around 60% of cases of DOA. The majority of patients have a pure ocular phenotype, but 20% have extra-ocular features (DOA +). We report on a patient with DOA + manifesting as bilateral optic atrophy, spastic paraparesis, urinary incontinence and white matter changes in the central nervous system associated with a novel heterozygous splice variant NM_015560.2(OPA1):c.2356-1 G > T. Further characterisation, which was performed using fibroblasts obtained from a skin biopsy, demonstrated that this variant altered mRNA splicing of the OPA1 transcript, specifically a 21 base pair deletion at the start of exon 24, NM_015560.2(OPA1):p.Cys786_Lys792del. The majority of variant transcripts were shown to escape nonsense-mediated decay and modelling of the predicted protein structure suggests that the in-frame 7 amino acid deletion may affect OPA1 oligomerisation. Fibroblasts carrying the c.2356-1 G > T variant demonstrated impaired mitochondrial bioenergetics, membrane potential, increased cell death, and disrupted and fragmented mitochondrial networks in comparison to WT cells. This study suggests that the c.2356-1 G > T OPA1 splice site variant leads to a cryptic splice site activation and may manifest in a dominant-negative manner, which could account for the patient's severe syndromic phenotype.


Assuntos
Atrofia Óptica Autossômica Dominante , Sítios de Splice de RNA , GTP Fosfo-Hidrolases/genética , Humanos , Mitocôndrias/genética , Mitocôndrias/patologia , Mutação , Atrofia Óptica Autossômica Dominante/genética , Atrofia Óptica Autossômica Dominante/patologia
19.
Nat Med ; 28(5): 1014-1021, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35379979

RESUMO

CEP290-associated Leber congenital amaurosis type 10 (LCA10) is a retinal disease resulting in childhood blindness. Sepofarsen is an RNA antisense oligonucleotide targeting the c.2991+1655A>G variant in the CEP290 gene to treat LCA10. In this open-label, phase 1b/2 ( NCT03140969 ), 12-month, multicenter, multiple-dose, dose-escalation trial, six adult patients and five pediatric patients received ≤4 doses of intravitreal sepofarsen into the worse-seeing eye. The primary objective was to evaluate sepofarsen safety and tolerability via the frequency and severity of ocular adverse events (AEs); secondary objectives were to evaluate pharmacokinetics and efficacy via changes in functional outcomes. Six patients received sepofarsen 160 µg/80 µg, and five patients received sepofarsen 320 µg/160 µg. Ten of 11 (90.9%) patients developed ocular AEs in the treated eye (5/6 with 160 µg/80 µg; 5/5 with 320 µg/160 µg) versus one of 11 (9.1%) in the untreated eye; most were mild in severity and dose dependent. Eight patients developed cataracts, of which six (75.0%) were categorized as serious (2/3 with 160 µg/80 µg; 4/5 with 320 µg/160 µg), as lens replacement was required. As the 160-µg/80-µg group showed a better benefit-risk profile, higher doses were discontinued or not initiated. Statistically significant improvements in visual acuity and retinal sensitivity were reported (post hoc analysis). The manageable safety profile and improvements reported in this trial support the continuation of sepofarsen development.


Assuntos
Amaurose Congênita de Leber , Adulto , Antígenos de Neoplasias/genética , Cegueira/genética , Proteínas de Ciclo Celular/genética , Criança , Proteínas do Citoesqueleto/metabolismo , Humanos , Amaurose Congênita de Leber/tratamento farmacológico , Amaurose Congênita de Leber/genética , Oligonucleotídeos Antissenso/efeitos adversos , Visão Ocular
20.
Methods Mol Biol ; 2434: 245-255, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35213022

RESUMO

Inherited retinal dystrophies, such as Leber congenital amaurosis, Stargardt disease, and retinitis pigmentosa, are characterized by photoreceptor dysfunction and death and currently have few treatment options. Recent technological advances in induced pluripotent stem cell (iPSC) technology and differentiation methods mean that human photoreceptors can now be studied in vitro. For example, retinal organoids provide a platform to study the development of the human retina and mechanisms of diseases in the dish, as well as being a potential source for cell transplantation. Here, we describe differentiation protocols for 3D cultures that produce retinal organoids containing photoreceptors with rudimentary outer segments. These protocols can be used as a model to understand retinal disease mechanisms and test potential therapies, including antisense oligonucleotides (AONs) to alter gene expression or RNA processing. This "retina in a dish" model is well suited for use with AONs, as the organoids recapitulate patient mutations in the correct genomic and cellular context, to test potential efficacy and examine off-target effects on the translational path to the clinic.


Assuntos
Células-Tronco Pluripotentes Induzidas , Retinose Pigmentar , Diferenciação Celular/genética , Humanos , Organoides , Células Fotorreceptoras , Retina/metabolismo , Retinose Pigmentar/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA