Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Appl Biomater Funct Mater ; 22: 22808000241236590, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444166

RESUMO

OBJECTIVE: To evaluate the antitumor and antimicrobial properties of an alginate-based membrane (ABM) loaded with bismuth lipophilic nanoparticles (BisBAL NPs) and cetylpyridinium chloride (CPC) on clinically isolated bacteria and a pancreatic cancer cell line. MATERIAL AND METHODS: The BisBAL NP-CPC ABM was characterized using optical and scanning electron microscopy (SEM). The antimicrobial potential was measured using the disk-diffusion assay, and antibiofilm activity was determined through the live/dead assay and fluorescence microscopy. The antitumor activity was analyzed on the pancreatic cell line (Panc 03.27) using the MTT assay and live/dead assay with fluorescence microscopy. RESULTS: After a 24-h exposure (37°C, aerobic conditions), 5 µM BisBAL NP reduced the growth of K. pneumoniae by 77.9%, while 2.5 µM BisBAL NP inhibited the growth of Salmonella, E. faecalis and E. faecium by 82.9%, 82.6%, and 78%, respectively (p < 0.0001). The BisBAL NPs-CPC ABM (at a ratio of 10:1; 500 and 50 µM, respectively) inhibited the growth of all isolated bacteria, producing inhibition halos of 9.5, 11.2, 7, and 10.3 mm for K. pneumoniae, Salmonella, E. faecalis, and E. faecium, respectively, in contrast to the 6.5, 9.5, 8.5, and 9.8 mm obtained with 100 µM ceftriaxone (p < 0.0001). The BisBAL NPs-CPC ABM also reduced bacterial biofilms, with 81.4%, 74.5%, 97.1%, and 79.5% inhibition for K. pneumoniae, E. faecium, E. faecalis, and Salmonella, respectively. Furthermore, the BisBAL NPs-CPC ABM decreased Panc 03.27 cell growth by 76%, compared to 18% for drug-free ABM. GEM-ABM reduced tumoral growth by 73%. The live/dead assay confirmed that BisBAL NPs-CPC-ABM and GEM-ABM were cytotoxic for the turmoral Panc 03.27 cells. CONCLUSION: An alginate-based membrane loaded with BisBAL NP and CPC exhibits dual antimicrobial and antitumoral efficacy. Therefore, it could be applied in cancer treatment and to diminish the occurrence of surgical site infections.


Assuntos
Anti-Infecciosos , Bismuto , Dimercaprol/análogos & derivados , Compostos Organometálicos , Cetilpiridínio/farmacologia , Anti-Infecciosos/farmacologia , Alginatos/farmacologia , Klebsiella pneumoniae
2.
Environ Sci Technol ; 57(48): 19942-19955, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37943153

RESUMO

Although airborne bacteria and fungi can impact human, animal, plant, and ecosystem health, very few studies have investigated the possible impact of their long-range transport in the context of more commonly measured aerosol species, especially those present in an urban environment. We report first-of-kind simultaneous measurements of the elemental and microbial composition of North American respirable airborne particulate matter concurrent with a Saharan-Sahelian dust episode. Comprehensive taxonomic and phylogenetic profiles of microbial communities obtained by 16S/18S/ITS rDNA sequencing identified hundreds of bacteria and fungi, including several cataloged in the World Health Organization's lists of global priority human pathogens along with numerous other animal and plant pathogens and (poly)extremophiles. While elemental analysis sensitively tracked long-range transported Saharan dust and its mixing with locally emitted aerosols, microbial diversity, phylogeny, composition, and abundance did not well correlate with the apportioned African dust mass. Bacterial/fungal diversity, phylogenetic signal, and community turnover were strongly correlated to apportioned sources (especially vehicular emissions and construction activities) and elemental composition (especially calcium). Bacterial communities were substantially more dissimilar from each other across sampling days than were fungal communities. Generalized dissimilarity modeling revealed that daily compositional turnover in both communities was linked to calcium concentrations and aerosols from local vehicles and Saharan dust. Because African dust is known to impact large areas in northern South America, the Caribbean Basin, and the southern United States, the microbiological impacts of such long-range transport should be assessed in these regions.


Assuntos
Poeira , Ecossistema , Humanos , Animais , Poeira/análise , Texas , Cálcio/análise , Filogenia , Bactérias/genética , Aerossóis/análise , Fungos/genética , Monitoramento Ambiental , Microbiologia do Ar
3.
Atmos Environ (1994) ; 2922023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36937802

RESUMO

We quantify the contributions of long-range and regionally transported aerosols to ambient primary PM2.5 and PM10 in a representative United States industrialized/urban atmosphere via detailed elemental analysis and chemical mass balance (CMB) modeling after identifying their presence using a variety of publicly available satellite data/information, software products, and synoptic-scale aerosol models. A year-long study in Houston, Texas identified North African dust as the principal long-range global source of primary particulate matter (PM). CMB estimated transatlantic dust from the Sahara-Sahel region to be dominant in the summer months contributing an average of 3.5 µg m-3 to PM2.5 and 7.9 µg m-3 to PM10 during May-August, i.e., the active Saharan dust season. Biomass burning was the chief source of regionally transported PM impacting air quality on different occasions throughout the year depending on the fire location. Four major biomass combustion events affecting air quality in Texas were calculated to contribute an average of 1.3 µg m-3 to PM2.5 and 1.4 µg m-3 to PM10 in corresponding samples whose origins were tracked to Canada, southeastern states of USA, and Central America using fire maps, HYSPLIT back trajectories, and the Navy Aerosol Analysis and Prediction System global aerosol model. Elemental concentrations and signature ratios revealed significant mixing of potassium, rare earth metals, and vanadium from proximal and distal crustal (natural) sources with anthropogenically emitted PM. This demonstrates the need to isolate the non-mineral components of these metals to employ them as tracers for primary PM emitted by biomass burning, petroleum refineries, and oil combustion. Transboundary contributions to primary PM2.5 were 1.5 µg m-3 and 3.1 µg m-3 to PM10 adding 16% to annual average mass concentration of both size fractions demonstrating that local sources were primarily responsible for ambient air quality with non-trivial contributions from international and interstate sources. Rigorously identifying and quantifying aerosol sources assists in improving air quality management policies designed to protect public health and comply with ever-decreasing federal PM standards that allow state agencies to exclude contributions that are not reasonably controllable or preventable from regulatory decisions and actions.

4.
J Appl Biomater Funct Mater ; 21: 22808000231161177, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36942951

RESUMO

OBJECTIVE: To determine the combined antitumor effect of bismuth lipophilic nanoparticles (BisBAL NP) and cetylpyridinium chloride (CPC) on human lung tumor cells. MATERIAL AND METHODS: The human lung tumor cells A549 were exposed to 1-100 µM BisBAL NP or CPC, either separately or in a 1:1 combination. Cell viability was measured with the PrestoBlue assay, the LIVE/DEAD assay, and fluorescence microscopy. The integrity and morphology of cellular microtubules were analyzed by immunofluorescence. RESULTS: A 24-h exposure to 1 µM solutions reduced A549 growth with 21.5% for BisBAL NP, 70.5% for CPC, and 92.4% for the combination (p < 0.0001), while a 50 µM BisBAL NP/CPC mixture inhibited cell growth with 99% (p < 0.0001). BisBAL NP-curcumin conjugates were internalized within 30 min of exposure and could be traced within the nucleus of tumor cells within 2 h. BisBAL NP, but not CPC, interfered with microtubule organization, thus interrupting cell replication, similar to the action mechanism of docetaxel. CONCLUSION: The growth inhibition of A549 human tumor cells by BisBAL NP and CPC was cumulative as of 1 µM. The BisBAL NP/CPC combination may constitute an innovative and cost-effective alternative for treating human lung cancer.


Assuntos
Neoplasias Pulmonares , Nanopartículas , Humanos , Bismuto , Cetilpiridínio/farmacologia , Neoplasias Pulmonares/tratamento farmacológico
5.
Math Biosci Eng ; 20(1): 1274-1296, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36650811

RESUMO

Microfiltration is a widely used engineering technology for fresh water production and water treatment. The major concern in many applications is the formation of a biological fouling layer leading to increased hydraulic resistance and flux decline during membrane operations. The growth of bacteria constituting such a biological layer implicates the formation of a multispecies biofilm and the consequent increase of operational costs for reactor management and cleaning procedures. To predict the biofouling evolution, a mono-dimensional continuous free boundary model describing biofilm dynamics and EPS production in different operational phases of microfiltration systems has been well studied. The biofouling growth is governed by a system of hyperbolic PDEs. Substrate dynamics are modeled through parabolic equations accounting for diffusive and advective fluxes generated during the filtration process. The free boundary evolution depends on both microbial growth and detachment processes. What is not addressed is the interplay between biofilm dynamics, filtration, and water recovery. In this study, filtration and biofilm growth modeling principles have been coupled for the definition of an original mathematical model able to reproduce biofouling evolution in membrane systems. The model has been solved numerically to simulate biologically relevant conditions, and to investigate the hydraulic behavior of the membrane. It has been calibrated and validated using lab-scale data. Numerical results accurately predicted the pressure drop occurring in the microfiltration system. A calibrated model can give information for optimization protocols as well as fouling prevention strategies.


Assuntos
Incrustação Biológica , Purificação da Água , Membranas Artificiais , Biofilmes , Filtração/métodos , Modelos Biológicos , Purificação da Água/métodos
6.
Water Res ; 226: 119241, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36279612

RESUMO

Treatment and reuse of some produced waters is made difficult due to their hypersalinity, high concentrations of myriad other dissolved and suspended components, specialized technology requirements (modularity, portability, and short residence times), and lack of existing information on their processing. In this work, produced water containing ∼100,000 mg/L total dissolved solids from the Permian Basin was coagulated with aluminum chlorohydrate (ACH) and flocculated with an anionic high molecular weight organic polymer prior to dissolved air flotation (DAF) and sedimentation to reduce turbidity to < 4 NTU and iron < 0.8 mg/L (>95% removal in both cases) with a total coagulation-flocculation-sedimentation/flotation residence time of only 5 min. Two advantages of DAF over sedimentation were noted: (i) DAF required only half the dosage of the pre-hydrolyzed ACH coagulant to remove ∼90% of turbidity and iron even without the organic polymeric flocculant and (ii) DAF even operated successfully without ACH coagulation (i.e., using only the organic polymeric flocculant) evidencing its lower chemical dosing needs. Further, DAF attained all water quality and operational goals at a recycle ratio of only 12% demonstrating that it outperformed sedimentation to generate clean brine at relatively reduced excess energies necessary for air saturation. Higher DAF recycle ratios reduced turbidity and iron removal possibly due to floc breakage. Colloids were effectively destabilized by double layer compression (due to high water salinity), charge neutralization (via adsorption of Al13 polycations), and enmeshment (precipitation of amorphous aluminum). They were flocculated via interparticle bridging (by the anionic organic polymeric flocculant) to create large, compact flocs facilitating ultrashort flotation/sedimentation times. Direct evidence for these individual coagulation and flocculation mechanisms were obtained using electrophoretic mobility measurements, thermogravimetric analysis, X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, optical microscopy, computational image and video analysis, and scanning electron microscopy - energy dispersive X-ray spectroscopy.


Assuntos
Purificação da Água , Purificação da Água/métodos , Alumínio/química , Floculação , Ferro , Polímeros
7.
Environ Sci Technol ; 56(12): 7729-7740, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35670821

RESUMO

Tracking Saharan-Sahelian dust across the globe is essential to elucidate its effects on Earth's climate, radiation budget, hydrologic cycle, nutrient cycling, and also human health when it seasonally enters populated/industrialized regions of Africa, Europe, and North America. However, the elemental composition of mineral dust arising locally from construction activities and aeolian soil resuspension overlaps with African dust. Therefore, we derived a novel "isotope-resolved chemical mass balance" (IRCMB) method by employing radiogenic strontium, neodymium, and hafnium isotopes to accurately differentiate and quantitatively apportion collinear proximal and synoptic-scale crustal and anthropogenic mineral dust sources. IRCMB was applied to two air masses that transported African dust to Barbados and Texas to track particulate matter (PM) spikes at both locations. During Saharan-Sahelian intrusions, the radiogenic content of urban PM2.5 increased with respect to 87Sr/86Sr and 176Hf/177Hf but decreased in terms of 143Nd/144Nd, demonstrating the ability of these isotopes to sensitively track African dust intrusions even in complex metropolitan atmospheres. The principal aerosol strontium, neodymium, and hafnium end members were concrete dust and soil, soil and motor vehicles, and motor vehicles and North African dust, respectively. IRCMB separated and quantified local soil and distal crustal dust even when PM2.5 concentrations were low, opening a promising source apportionment avenue for urbanized/industrialized atmospheres.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Atmosfera , Poeira/análise , Monitoramento Ambiental/métodos , Háfnio/análise , Humanos , Isótopos , Minerais , Neodímio/análise , Material Particulado/análise , Solo , Estrôncio , Texas
8.
J Appl Biomater Funct Mater ; 20: 22808000221092157, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35485910

RESUMO

OBJECTIVE: Analyze the antitumor capacity of cetylpyridinium chloride (CPC) on human breast tumor cells, and the possible action mechanism. MATERIAL AND METHODS: The human breast tumor cells MCF-7 and no-tumor breast cells MCF-10A were exposed to CPC under various condition (concentration and duration). Cell viability was measured with MTT assay, the LIVE/DEAD assay, and fluorescence microscopy. Membrane permeability after CPC exposure was evaluated by Calcein AM assay, mitochondrial morphology with a MitoView staining, and genotoxicity with the comet assay and fluorescence microscopy. RESULTS: CPC was cytotoxic to both MCF-7 and MCF-10A as of a 24-h exposure to 0.1 µM. Cytotoxicity was dose-dependent and reached 91% for MCF-7 and 78% for MCF-10A after a 24-h exposure to 100 µM CPC, which outperformed the positive control doxorubicin in effectiveness and selectivity. The LD50 of CPC on was 6 µM for MCF-7 and 8 µM for MCF-10A, yielding a selectivity index of 1.41. A time response analysis revealed 64% dead cells after only 5 min of exposure to 100 µM CPC. With respect to the action mechanisms, the comet assay did not reveal genome fragmentation. On the other hand, membrane damage was dose-dependent and may also affect mitochondrial morphology. CONCLUSION: Cetylpyridinium chloride inhibits MCF-7 cell growing in a non-selective way as of 5 min of exposure. The action mechanism of CPC on tumor cells involves cell membrane damage without change neither mitochondrial morphology nor genotoxicity.


Assuntos
Antineoplásicos , Neoplasias da Mama , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Sobrevivência Celular , Cetilpiridínio/farmacologia , Feminino , Humanos , Células MCF-7
9.
J Appl Biomater Funct Mater ; 20: 22808000211069221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35114826

RESUMO

The objective of this study was to determine the antimicrobial potential of AH plus supplemented with bismuth lipophilic nanoparticles (BisBAL NPs) on the growth of Enterococcus faecalis isolated from patients with endodontic infections. BisBAL NPs, synthesized with the colloidal method, were characterized, in its pure form or AH Plus-absorbed, by energy-dispersive X-ray spectroscopy and scanning electron microscopy (EDS-SEM). Antimicrobial activity was evaluated with disc diffusion assays, and antibiofilm activity with fluorescence microscopy. BisBAL NP-supplemented AH Plus had a 4.9 times higher antimicrobial activity than AH Plus alone (p = 0.0001). In contrast to AH Plus alone, AH Plus supplemented with BisBAL NP inhibited E. faecalis biofilm formation. The sealing properties of AH plus were not modified by the incorporation of BisBAL NPs, which was demonstrated by a 12-day split-chamber leakage assay with daily inoculation, which was used to evaluate the possible filtration of E. faecalis. Finally, BisBAL NP-supplemented AH plus-BisBAL NPs was not cytotoxic for cultured human gingival fibroblasts. Their viability was 83.7% to 89.9% after a 24-h exposure to AH Plus containing 50 and 10 µM BisBAL NP, respectively. In conclusion, BisBAL NP-supplemented AH Plus constitutes an innovative nanomaterial to prevent re-infection in endodontic patients without cytotoxic effects.


Assuntos
Anti-Infecciosos , Nanopartículas , Materiais Restauradores do Canal Radicular , Bismuto , Enterococcus faecalis , Resinas Epóxi , Humanos
10.
Anticancer Agents Med Chem ; 22(14): 2548-2557, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35168526

RESUMO

AIM: The objective of this study was to analyze the antitumor effect of BisBAL NP in a mouse melanoma model. MATERIALS AND METHODS: The antitumor activity of BisBAL NP on murine B16-F10 melanoma cells was determined both in vitro (PrestoBlue cell viability assay and Live/Dead fluorescence) and in vivo, in a mouse model, with the following 15-day treatments: BisBAL NP, negative control (PBS), and cell-death control (docetaxel; DTX). Mouse survival and weight, as well as the tumor volume, were recorded daily during the in vivo study. RESULTS: BisBAL NP were homogeneous in size (mean diameter, 14.7 nm) and bismuth content. In vitro, 0.1 mg/mL BisBAL NP inhibited B16-F10 cell growth stronger (88%) than 0.1 mg/mL DTX (82%) (*p<0.0001). In vivo, tumors in mice treated with BisBAL NP (50 mg/kg/day) or DTX (10 mg/kg/day) were 76% and 85% smaller than the tumors of negative control mice (*p<0.0001). The average weight of mice was 18.1 g and no statistically significant difference was detected among groups during the study. Alopecia was only observed in all DTX-treated mice. The survival rate was 100% for the control and BisBAL NP groups, but one DTX- treated mouse died at the end of the treatment period. The histopathological analysis revealed that exposure to BisBAL NP was cytotoxic for tumor tissue only, without affecting the liver or kidney. CONCLUSION: BisBAL NP decreased the tumor growing in a mouse melanoma model without secondary effects, constituting an innovative low-cost alternative to treat melanoma.


Assuntos
Antineoplásicos , Melanoma Experimental , Nanopartículas , Animais , Antineoplásicos/farmacologia , Bismuto/farmacologia , Linhagem Celular Tumoral , Dimercaprol/análogos & derivados , Dimercaprol/farmacologia , Humanos , Melanoma Experimental/tratamento farmacológico , Camundongos , Compostos Organometálicos
11.
Talanta ; 241: 123236, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35074680

RESUMO

We present novel chemical separation protocols for isotopic analysis of low mass aliquots (0.3 mg and 25 mg) of several reference materials and real-world samples of relevance to urban airborne particulate matter (PM) investigations. A high-yielding gravity flow column chromatography scheme was developed for facile and quantitative separation of Sr, Nd, and Hf prior to multi collector - inductively coupled plasma - mass spectrometry (MC-ICP-MS). Because we are interested in isolating and accurately quantitating individual anthropogenic and natural aerosol sources in complex industrial/metropolitan atmospheric environments, laboratory protocols were optimized using National Institute of Standards and Technology Standard Reference Material (SRM) 1648a (urban atmospheric PM), SRM 1633b (coal fly ash), and European Commission standards BCR-723 (vehicular road dust), and BCR-2 (basalt rock standard). Sr, Nd, and Hf procedural blanks from column chromatography were low (averaging only 37 pg, 17 pg, 11 pg, respectively) and recoveries were high (averaging 95%, 82%, and 92%, respectively). A volume-adjustment protocol was established using isotope reference solutions SRM 987 (SrCO3), JNdi (Nd2O3), and in-house Hf standards to dilute the dried samples prior to MC-ICP-MS based on projected uncertainties for low sample masses. 87Sr/86Sr, 143Nd/144Nd, and 176Hf/177Hf isotopic ratios in SRM 1648a, BCR-723, and SRM 1633b are reported for the first time that can serve as provisional reference values. The novel method was used to characterize isotopic ratios and elemental abundances in two anthropogenic urban aerosol sources, namely motor vehicles and petroleum refining using airborne fine PM collected in a vehicular tunnel and fluidized-bed catalytic cracking catalysts, respectively. Two other important mineral-rich urban PM sources, namely soil (i.e., resuspended crustal material) and concrete/cement dust (i.e., construction activity) were also characterized. These are the first isotopic measurements in these environmental compartments and were compared with literature data for long-range transported North African dust, which is a prominent summertime PM source in urban regions in southeastern United States. We demonstrate the capability of coupled Sr-Nd-Hf isotopes to uniquely trace different mineral dust sources with overlapping elemental composition (Sahara-Sahel region, local soil, and concrete/cement) and accurately isolate various urban PM sources demonstrating the superiority of isotopic markers over elemental tracers.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Atmosfera , Poeira/análise , Monitoramento Ambiental/métodos , Material Particulado/análise
12.
Environ Sci Technol ; 55(19): 13198-13208, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34546747

RESUMO

Virus destabilization and inactivation are critical considerations in providing safe drinking water. We demonstrate that iron electrocoagulation simultaneously removed (via sweep flocculation) and inactivated a non-enveloped virus surrogate (MS2 bacteriophage) under slightly acidic conditions, resulting in highly effective virus control (e.g., 5-logs at 20 mg Fe/L and pH 6.4 in 30 min). Electrocoagulation simultaneously generated H2O2 and Fe(II) that can potentially trigger electro-Fenton reactions to produce reactive oxygen species such as •OH and high valent oxoiron(IV) that are capable of inactivating viruses. To date, viral attenuation during water treatment has been largely probed by evaluating infective virions (as plaque forming units) or genomic damage (via the quantitative polymerase chain reaction). In addition to these existing means of assessing virus attenuation, a novel technique of correlating transmission electron micrographs of electrocoagulated MS2 with their computationally altered three-dimensional electron density maps was developed to provide direct visual evidence of capsid morphological damages during electrocoagulation. The majority of coliphages lost at least 10-60% of the capsid protein missing a minimum of one of the 5-fold and two of 3- and 2-fold regions upon electrocoagulation, revealing substantial localized capsid deformation. Attenuated total reflectance-Fourier transform infrared spectroscopy revealed potential oxidation of viral coat proteins and modification of their secondary structures that were attributed to reactive oxygen species. Iron electrocoagulation simultaneously disinfects and coagulates non-enveloped viruses (unlike conventional coagulation), adding to the robustness of multiple barriers necessary for public health protection and appears to be a promising technology for small-scale distributed water treatment.


Assuntos
Ferro , Purificação da Água , Capsídeo , Proteínas do Capsídeo , Eletrocoagulação , Peróxido de Hidrogênio , Levivirus/genética , Inativação de Vírus
13.
Environ Sci Technol ; 55(4): 2674-2683, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33533250

RESUMO

It is imperative to understand the behavior of enveloped viruses during water treatment to better protect public health, especially in the light of evidence of detection of coronaviruses in wastewater. We report bench-scale experiments evaluating the extent and mechanisms of removal and/or inactivation of a coronavirus surrogate (ϕ6 bacteriophage) in water by conventional FeCl3 coagulation and Fe(0) electrocoagulation. Both coagulation methods achieved ∼5-log removal/inactivation of ϕ6 in 20 min. Enhanced removal was attributed to the high hydrophobicity of ϕ6 imparted by its characteristic phospholipid envelope. ϕ6 adhesion to freshly precipitated iron (hydr)oxide also led to envelope damage causing inactivation in both coagulation techniques. Fourier transform infrared spectroscopy revealed oxidative damages to ϕ6 lipids only for electrocoagulation consistent with electro-Fenton reactions. Monitoring ϕ6 dsRNA by a novel reverse transcription quantitative polymerase chain reaction (RT-qPCR) method quantified significantly lower viral removal/inactivation in water compared with the plaque assay demonstrating that relying solely on RT-qPCR assays may overstate human health risks arising from viruses. Transmission electron microscopy and computationally generated electron density maps of ϕ6 showed severe morphological damages to virus' envelope and loss of capsid volume accompanying coagulation. Both conventional and electro- coagulation appear to be highly effective in controlling enveloped viruses during surface water treatment.


Assuntos
Ferro , Purificação da Água , Eletrocoagulação , Humanos , Inativação de Vírus , Águas Residuárias
14.
Sci Total Environ ; 747: 141268, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-32799023

RESUMO

The primary objective of this research is to accurately estimate light-duty vehicles' (LDVs') emissions of PM2.5 and PM10 over the course of a year within the property line of an inner-city school located adjacent to a heavily-trafficked interstate highway by measuring platinum group elements (PGEs - Rh, Pd, and Pt) along with 49 other major and trace elements. Amongst PGEs, ambient Pd concentrations were the highest, averaging 11 pg/m3 in PM10 and 4.0 pg/m3 in PM2.5 followed by Pt (3.5 pg/m3 in PM10 and 1.4 pg/m3 in PM2.5), and Rh (1.6 pg/m3 in PM10 and 0.52 pg/m3 in PM2.5). Simultaneous three-component variations in Rh, Pd, and Pt in both PM size classes at this surface site closely matched the composition of (i) a mixed random lot of recycled autocatalysts obtained from numerous LDVs and (ii) PM inside a proximal underwater tunnel open only to light-duty vehicles. Additionally, quantitative estimates of LDV contributions to ambient PM calculated by chemical mass balance modeling (CMB) were strongly correlated with PGE abundances. Therefore, PGEs predominantly originated from gasoline-driven motor vehicles validating them as unique LDV tracers. Further, CMB estimated that vehicles contributed 37% on average (12-67%) to PM10 and 49% on average (25-73%) to PM2.5. Evidence is also presented for a subset of other trace metals; i.e. Cu, As, Mo, Cd, and Sb to also be relatively strong LDV tracers. Results highlight the importance of measuring PGEs in addition to numerous other elements in PM to accurately apportion aerosols emanating from LDVs, which will better isolate public health and environmental impacts associated with the transportation sector.

15.
Water Res ; 170: 115330, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31786393

RESUMO

Reusing produced water for hydraulic fracturing simultaneously satisfies challenges of fresh water sourcing and the installation/operation of an extensive disposal well infrastructure. Herein, we systematically and rigorously investigate produced water treatment for reuse during hydraulic fracturing. Highly saline and turbid produced water from the Permian Basin was treated by adding chlorine as an oxidant, FeCl3 as the primary coagulant, and an anionic polymer to induce high rate sedimentation to generate "clean brine" by removing suspended solids and iron over a range of environmentally relevant temperatures. Mobile phone video capture, optical microscopy, and digital image/video analysis were employed to characterize floc morphology and measure its size and settling velocity. Conformational changes of the polymeric coagulant between 4 and 44 °C were inferred from viscosity and dynamic light scattering measurements providing clues to its performance characteristics. Floc settling velocities measured over the entire range of polymer dosages and temperatures were empirically modelled incorporating their fractal nature, average size, and the viscosity of the produced water using only a single fitting parameter. Juxtaposing the anionic polymer with the hydrolyzing metal-ion coagulant effectively destabilized the suspension and caused floc growth through a combination of enmeshment, adsorption and charge neutralization and inter-particle bridging as evidenced by Fourier transform infrared spectroscopy and thermogravimetric analysis. Very high turbidity (≥98%) and total iron (≥97%) removals were accomplished even with very short flocculation and sedimentation times of only 6 minutes each suggesting the feasibility of this approach to reuse produced water for hydraulic fracturing.


Assuntos
Fraturamento Hidráulico , Purificação da Água , Floculação , Ferro , Polímeros , Temperatura , Água
16.
Anticancer Drugs ; 31(3): 251-259, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31764012

RESUMO

The objective of this study was to analyze the antitumor activity of a hydrogel loaded with lipophilic bismuth nanoparticles on human cervical, prostate, and colon cancer cell lines. The effect of lipophilic bismuth nanoparticles on the viability of cancer cell lines (HeLa, DU145, and HCT-116) and non-cancer lung fibroblasts (HLF; LL 47[MaDo]) was determined with the MTT cell viability assay and compared with known antineoplastic drugs. The biocompatibility at an organismal level was verified in a murine model by histological examination. A lipophilic bismuth nanoparticle hydrogel at 50 µM time-dependently inhibited the growth of the three cancer cell lines, in a time-dependent way. A 1-hour exposure to 250 µM lipophilic bismuth nanoparticle hydrogel, inhibited the growth of the three cancer cell lines. The in-vitro efficacy of lipophilic bismuth nanoparticle was similar to the one of docetaxel and cisplatin, but without inhibiting the growth of non-cancer control cells. Histology confirmed the biocompatibility of lipophilic bismuth nanoparticles as there were no signs of cytotoxicity or tissue damage in any of the evaluated organs (kidney, liver, brain, cerebellum, heart, and jejunum). In conclusion, a lipophilic bismuth nanoparticle hydrogel is an innovative, low-cost alternative for the topical treatment of cervicouterine, prostate, and colon human cancers.


Assuntos
Antineoplásicos/farmacologia , Bismuto/farmacologia , Neoplasias do Colo/tratamento farmacológico , Nanopartículas/química , Neoplasias da Próstata/tratamento farmacológico , Neoplasias do Colo do Útero/tratamento farmacológico , Animais , Bismuto/química , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Feminino , Células HeLa , Humanos , Hidrogéis/química , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias da Próstata/patologia , Neoplasias do Colo do Útero/patologia
17.
Dent Mater J ; 38(4): 611-620, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31105160

RESUMO

The objective of this work was to analyze the antimicrobial and antibiofilm activities of bismuth lipophilic nanoparticles (BisBAL NPs) incorporated into chitosan-based membranes. Chitosan-based membranes were homogeneously embedded with BisBAL NPs, confirming the bismuth presence by scanning electron microscopy. The tensile strength of chitosan-based membrane alone or with BisBAL NPs showed similar results as elongation, suggesting that BisBAL NP addition did not affect membrane mechanical properties. Chitosan-based membranes complemented with 100 µM of BisBAL NPs caused a complete inhibition of biofilm formation and a 90-98% growth inhibition of six different oral pathogens. Cytotoxicity studies revealed that 80% of human gingival fibroblasts were viable after a 24-h exposure to the chitosan-based membrane with 100 µM of BisBAL NPs and collagen. Altogether, we conclude that the biological properties of chitosan-based membranes supplemented with BisBAL NPs could be a very interesting option for tissue regeneration.


Assuntos
Anti-Infecciosos , Quitosana , Nanopartículas , Antibacterianos , Bismuto , Humanos
18.
Int J Nanomedicine ; 13: 6089-6097, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30323596

RESUMO

AIM: The objective of this study was to evaluate the antitumor activity of lipophilic bismuth nanoparticles (BisBAL NPs) on breast cancer cells. MATERIALS AND METHODS: The effect of varying concentrations of BisBAL NPs was evaluated on human MCF-7 breast cancer cells and on MCF-10A fibrocystic mammary epitheliocytes as noncancer control cells. Cell viability was evaluated with the MTT assay, plasma membrane integrity was analyzed with the calcein AM assay, genotoxicity with the comet assay, and apoptosis with the Annexin V/7-AAD assay. RESULTS: BisBAL NPs were spherical in shape (average diameter, 28 nm) and agglomerated into dense electronic clusters. BisBAL NP induced a dose-dependent growth inhibition. Most importantly, growth inhibition was higher for MCF-7 cells than for MCF-10A cells. At 1 µM BisBAL NP, MCF-7 growth inhibition was 51%, while it was 11% for MCF-10A; at 25 µM BisBAL NP, the growth inhibition was 81% for MCF-7 and 24% for MCF-10A. With respect to mechanisms of action, a 24-hour exposure of 10 and 100 µM BisBAL NP caused loss of cell membrane integrity and fragmentation of tumor cell DNA. BisBAL NPs at 10 µM were genotoxic to and caused apoptosis of breast cancer cells. CONCLUSION: BisBAL NP-induced growth inhibition is dose dependent, and breast cancer cells are more vulnerable than noncancer breast cells. The mechanism of action of BisBAL NPs may include loss of plasma membrane integrity and a genotoxic effect on the genomic DNA of breast cancer cells.


Assuntos
Antineoplásicos/farmacologia , Bismuto/farmacologia , Neoplasias da Mama/patologia , Dimercaprol/análogos & derivados , Nanopartículas/química , Compostos Organometálicos/farmacologia , Apoptose/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Dano ao DNA , Dimercaprol/farmacologia , Feminino , Humanos , Células MCF-7 , Nanopartículas/ultraestrutura
19.
Water Res ; 126: 481-487, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29028491

RESUMO

One promising water management strategy during hydraulic fracturing is treatment and reuse of flowback/produced water. In particular, the saline flowback water contains many of the chemicals employed for fracking, which need to be removed before possible reuse as "frac water." This manuscript targets turbidity along with one of the additives; borate-based cross-linkers used to adjust the rheological characteristics of the frac-fluid. Alum and ferric chloride were evaluated as coagulants for clarification and boron removal from saline flowback water obtained from a well in the Eagle Ford shale. Extremely high dosages (> 9000 mg/L or 333 mM Al and 160 mM Fe) corresponding to Al/B and Fe/B mass ratios of ∼70 and molar ratios of ∼28 and 13 respectively were necessary to remove ∼80% boron. Hence, coagulation does not appear to be feasible for boron removal from high-strength waste streams. X-ray photoelectron spectroscopy revealed BO bonding on surfaces of freshly precipitated Al(OH)3(am) and Fe(OH)3(am) suggesting boron uptake was predominantly via ligand exchange. Attenuated total reflection-Fourier transform infrared spectroscopy provided direct evidence of inner-sphere boron complexation with surface hydroxyl groups on both amorphous aluminum and iron hydroxides. Only trigonal boron was detected on aluminum flocs since possible presence of tetrahedral boron was masked by severe AlO interferences. Both trigonal and tetrahedral conformation of boron complexes were identified on Fe(OH)3 surfaces.


Assuntos
Hidróxido de Alumínio/química , Boro/isolamento & purificação , Compostos Férricos/química , Fraturamento Hidráulico , Purificação da Água/métodos , Compostos de Alúmen , Alumínio , Cloretos , Hidróxidos , Ferro , Nefelometria e Turbidimetria , Águas Residuárias/química , Água , Poluentes Químicos da Água/isolamento & purificação
20.
Environ Sci Technol ; 51(9): 4851-4859, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28375618

RESUMO

Outdoor emissions of primary fine particles and their contributions to indoor air quality deterioration were examined by collecting PM2.5 inside and outside a mechanically ventilated high school in the ultraindustrialized ship channel region of Houston, TX over a 2-month period. By characterizing 47 elements including lanthanoids (rare earth elements), using inductively coupled plasma-mass spectrometry, we captured indoor signatures of outdoor episodic emissions arising from nonroutine operations of petroleum refinery fluidized-bed catalytic cracking units. Average indoor-to-outdoor (I/O) abundance ratios for the majority of elements were close to unity providing evidence that indoor metal-bearing PM2.5 had predominantly outdoor origins. Only Co had an I/O abundance ratio >1 but its indoor sources could not be explicitly identified. La and 17 other elements (Na, K, V, Ni, Co, Cu, Zn, Ga, As, Se, Mo, Cd, Sn, Sb, Ba, W, and Pb), including air toxics were enriched relative to the local soil both in indoor and outdoor PM2.5 demonstrating their noncrustal origins. Several lines of evidence including receptor modeling, lanthanoid ratios, and La-Ce-Sm ternary diagrams pointed to petroleum refineries as being largely responsible for enhanced La and total lanthanoid concentrations in the majority of paired indoor and outdoor PM2.5.


Assuntos
Poluentes Atmosféricos , Petróleo , Poluição do Ar em Ambientes Fechados , Monitoramento Ambiental , Elementos da Série dos Lantanídeos , Tamanho da Partícula , Material Particulado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA