Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1366954, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38840914

RESUMO

This systematic review aimed to verify whether there is evidence of an association between apical periodontitis and the presence of systemic biomarkers. This study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses - PRISMA. For this, the acronym PECO was used; population (P) of adult humans exposed (E) to the presence of apical periodontitis, compared (C) to adult humans without apical periodontitis, and the outcome (O) of the presence of biomarkers was observed. The articles were searched in PubMed, Scopus, Web of Science, LILACS, Cochrane Library, OpenGray, and Google Scholar grey databases. Subsequently, studies were excluded based on title, abstract, and full article reading, following the eligibility criteria. The methodological quality of the selected studies was evaluated using the Newcastle-Ottawa qualifier. After exclusion, 656 studies were identified, resulting in 17 final articles that were divided into case-control, cross-sectional, and cohort studies. Eight studies were considered to have a low risk of bias, one had a medium risk of bias, and eight had a high risk of bias. In addition, 12 articles evaluated biomarkers in blood plasma, four evaluated them in saliva, and only one evaluated them in gingival crevicular fluid. The results of these studies indicated an association between apical periodontitis and the systemic presence of biomarkers. These markers are mainly related to inflammation, such as interleukins IL-1, IL-2, and IL-6, oxidative markers, such as nitric oxide and superoxide anions, and immunoglobulins IgG and IgM. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier (CRD42023493959).


Assuntos
Biomarcadores , Periodontite Periapical , Humanos , Biomarcadores/sangue , Periodontite Periapical/sangue , Periodontite Periapical/metabolismo
2.
Biomed Pharmacother ; 174: 116554, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636401

RESUMO

We aimed to investigate the effectiveness of physical training as a protective strategy to mitigate alveolar bone damage and blood antioxidant defense caused by ethanol (EtOH) consumption in a binge-drinking pattern. Male Wistar rats aged approximately 90 days were divided into four groups: control, training, EtOH, and training + EtOH. The physical training protocol was conducted on a treadmill for four consecutive weeks, while the animals in the EtOH group were administered EtOH via orogastric gavage for three consecutive days each week, following the binge drink pattern. After the training period, blood and mandibles were collected for plasma oxidative biochemistry analysis, and the alveolar bone was subjected to physicochemical composition analysis, tissue evaluation, and microtomography evaluation. Our results showed that EtOH induced oxidative stress and physical exercise promoted the recovery of antioxidant action. Physical training minimized the damage to the mineral/matrix composition of the alveolar bone due to EtOH consumption and increased the density of osteocytes in the trained group treated with EtOH than in those exposed only to EtOH. Furthermore, physical training reduced damage to the alveolar bone caused by EtOH consumption. Our findings suggest that physical training can serve as an effective strategy to reduce systemic enzymatic oxidative response damage and alleviate alveolar bone damage resulting from alcohol consumption. Further investigations are warranted to elucidate the underlying mechanisms and explore, in addition to physical training, the potential effects of other activities with varying intensities on managing alcohol-induced bone damage.


Assuntos
Antioxidantes , Consumo Excessivo de Bebidas Alcoólicas , Etanol , Estresse Oxidativo , Condicionamento Físico Animal , Ratos Wistar , Animais , Masculino , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Condicionamento Físico Animal/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Consumo Excessivo de Bebidas Alcoólicas/sangue , Etanol/toxicidade , Ratos
3.
Heliyon ; 10(7): e27526, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586377

RESUMO

Mercury is a toxic pollutant that poses risks to both human and environmental health, making it a pressing public health concern. This study aimed to summarize the knowledge on mercury toxicology and the biological impairments caused by exposure to mercury in experimental studies and/or diagnosis in humans. The research was conducted on the main collection of Web of Science, employing as a methodological tool a bibliometric analysis. The selected articles were analyzed, and extracted data such as publication year, journal, author, title, number of citations, corresponding author's country, keywords, and the knowledge mapping was performed about the type of study, chemical form of mercury, exposure period, origin of exposure, tissue/fluid of exposure measurement, mercury concentration, evaluation period (age), mercury effect, model experiments, dose, exposure pathway, and time of exposure. The selected articles were published between 1965 and 2021, with Clarkson TW being the most cited author who has also published the most articles. A total of 38% of the publications were from the USA. These studies assessed the prenatal and postnatal effects of mercury, emphasizing the impact of methylmercury on neurodevelopment, including motor and cognitive evaluations, the association between mercury and autism, and an evaluation of its protective effects against mercury toxicity. In observational studies, the blood, umbilical cord, and hair were the most frequently used for measuring mercury levels. Our data analysis reveals that mercury neurotoxicology has been extensively explored, but the association among the outcomes evaluated in experimental studies has yet to be strengthened. Providing metric evidence on what is unexplored allows for new studies that may help governmental and non-governmental organizations develop guidelines and policies.

4.
Histol Histopathol ; : 18726, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38477344

RESUMO

The use of bleaching agents to remove stains is one of the main dental procedures to improve the aesthetics of teeth. This review presents the main agents used for tooth whitening, existing clinical protocols, and the structural changes that may occur through their use. The main bleaching agents consist of hydrogen peroxide and carbamide peroxide, which are used in bleaching techniques for vital teeth. These techniques can be performed in the office by a professional or by the individual in a home en-vironment under professional guidance. Bleaching agents come in a variety of concentrations and there are over-the-counter products available on the market with lower concentrations of hydrogen peroxide. Due to the chemical characteristics of the agents, changes in the organic and inorganic content of the tooth structure can be observed. These changes are related to morphological changes characterized by in-creased permeability and surface roughness, such changes compromise the mechanical resistance of the tooth. Furthermore, bleaching agents can promote molecular changes after reaching the dental pulp, resulting in oxidative stress of pulp cells and the release of pro-inflammatory mediators. Despite the bleaching effectiveness, tooth sensitivity is considered the main side effect of use. Therefore, among the heterogeneity of protocols, those that used the bleaching agent for a prolonged time and in lower con-centrations presented more harmful effects on the tooth structure.

5.
Front Public Health ; 11: 1183308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457266

RESUMO

Although there are many studies on the health effects of methylmercury (MeHg) toxicity during in utero and early development, little is known about its effects on mineralized tissues present in the oral cavity, such as enamel structure. Therefore, this study evaluated the effects of MeHg exposure on the physico-chemical, ultrastructural and functional properties of mature tooth enamel. Specifically, we studied offspring of mothers exposed to MeHg during the prenatal and postnatal periods which are the developmental stages associated with tooth enamel formation. Female rats were exposed to MeHg at a dose of 40 µg/kg/day for 42 days of pregnancy and lactation. The enamel of offspring was analyzed by (1) Fourier Transform Infrared Spectroscopy and Raman to assess physicochemical composition, (2) Scanning Electron Microscopy for ultrastructural evaluation, (3) Transmitted Polarizing Light Microscopy for analysis of the enamel extracellular matrix, and (4) resistance and hardness were evaluated by microhardness. The results showed that MeHg exposure during this sensitive enamel formation period induced changes in inorganic and organic content and enamel prisms ultrastructure alterations and disturbed the organic extracellular matrix due to a decreased enamel strength. These novel findings establish for the first time that maternal exposure to MeHg pre and postnatal promoted relevant changes in mature enamel of their offspring rats.


Assuntos
Compostos de Metilmercúrio , Efeitos Tardios da Exposição Pré-Natal , Humanos , Gravidez , Ratos , Animais , Feminino , Compostos de Metilmercúrio/toxicidade , Exposição Materna/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Saúde Bucal , Lactação
6.
Chemosphere ; 308(Pt 3): 136453, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36122745

RESUMO

Methylmercury (MeHg) is the most common organic form of mercury (Hg) that humans are exposed and is considered an environmental pollutant. Several populations that live in endemic regions of MeHg exposure are subject to the toxicant for long periods, including pregnant women and children, causing damage to several organs during early periods of development. Alveolar bone is an essential structure for the oral cavity, responsible for supporting teeth and masticatory forces. However, evidence on the effects of MeHg on alveolar bone and the intrauterine and lactation period is lacking. Thus, this study aimed to investigate the effects of MeHg exposure during gestation and lactation on the developing alveolar bone of offspring rats after maternal exposure. Dams were exposed during 41 days of pregnancy and lactation, and the mandibles of the offspring were collected. The alveolar bone was analyzed by Fourier Transform Infrared Spectroscopy to evaluate the physicochemical composition; by Scanning Electron Microscopy for ultrastructural evaluation; by histopathological, histochemical, and morphometric for tissue analyses. In addition, bone quality was assessed by X-ray microtomography. MeHg exposure altered the mineral composition and caused histological damage associated with a lower quantity and thickness of bone trabeculae, as well as reduced osteocyte density and collagen fiber content. A reduction in trabecular thickness and bone volume and an increase in trabecular spaces were observed and were associated with anatomical compromise of the vertical bone dimensions. Thus, the results suggest that the developing alveolar bone is susceptible to the toxic effects of MeHg when organisms are exposed during intrauterine and lactation periods. From a translational perspective, these changes in the alveolar bone can help us understand possible abnormalities induced by toxic metals and highlight the need for care for structures other than those already seen as targets for damage triggered by environmental MeHg exposure.


Assuntos
Poluentes Ambientais , Mercúrio , Compostos de Metilmercúrio , Animais , Criança , Colágeno , Feminino , Humanos , Lactação , Compostos de Metilmercúrio/toxicidade , Gravidez , Ratos
7.
Chemosphere ; 307(Pt 3): 136053, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35977563

RESUMO

The importance of fluoride (F) for oral health is well established in the literature. However, evidence suggests that excessive exposure to this mineral is associated with adverse effects at different life stages and may affect many biological systems, especially mineralized tissues. The purpose of this study was to investigate the effects of F exposure during pregnancy and breastfeeding on the alveolar bone of the offspring since the alveolar bone is one of the supporting components of the dental elements. For this, the progeny rats were divided into three groups: control, 10 mg F/L, and 50 mg F/L for 42 (gestational and lactation periods). Analysis of the quantification of F levels in the alveolar bone by particle-induced gamma emission; Raman spectroscopy to investigate the physicochemical aspects and mineral components; computed microtomography to evaluate the alveolar bone microstructure and analyses were performed to evaluate osteocyte density and collagen quantification using polarized light microscopy. The results showed an increase in F levels in the alveolar bone, promoted changes in the chemical components in the bone of the 50 mg F/L animals (p < 0.001), and had repercussions on the microstructure of the alveolar bone, evidenced in the 10 mg F/L and 50 mg F/L groups (p < 0.001). Furthermore, F was able to modulate the content of organic bone matrix, mainly collagen; thus, this damage possibly reduced the amount of bone tissue and consequently increased the root exposure area of the exposed groups in comparison to a control group (p < 0.001). Our findings reveal that Fcan modulate the physicochemical and microstructural dimensions and reduction of alveolar bone height, increasing the exposed root region of the offspring during the prenatal and postnatal period. These findings suggest that F can modulate alveolar bone mechanical strength and force dissipation functionality.


Assuntos
Fluoretos , Lactação , Animais , Densidade Óssea , Osso e Ossos , Colágeno , Feminino , Fluoretos/toxicidade , Minerais , Gravidez , Ratos
8.
Toxicol Rep ; 9: 563-574, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392159

RESUMO

The environmental contamination by methylmercury (MeHg) is a major concern for public health. The effects of MeHg in the central nervous system (CNS) of adult animals have been extensively investigated; however, little is known about the effects of MeHg exposure during intrauterine and lactation periods on motor and cognitive functions of adolescent rats. Therefore, this study aimed to investigate the effect of MeHg exposure during intrauterine life and lactation on both motor and cognitive functions of offspring rats. Ten female Wistar rats were exposed to 40 µg/kg/day of MeHg through cookie treats from the first day of pregnancy until the last day of breastfeeding. Both motor and cognitive functions of offspring male rats were assessed by open field, rotarod, and step-down inhibitory avoidance tests. Forty-one days after birth, the hippocampus and cerebellum were collected to determine total Hg content, antioxidant capacity against peroxyl radicals (ACAP), reduced glutathione (GSH) levels, lipid peroxidation (LPO), and nitrite levels. MeHg exposure during CNS development increased Hg levels in both hippocampal and cerebellar parenchymas, triggered oxidative stress throughout ACAP and GSH decrease, increased LPO and nitrite levels. These alterations resulted in reduced spontaneous and stimulated locomotion and short- and long-term memory deficits. Therefore, damages triggered by MeHg exposure during intrauterine life and lactation had detrimental effects on oxidative biochemistry and motor and cognitive functions of offspring rats.

9.
Int J Mol Sci ; 23(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35409136

RESUMO

Methylmercury (MeHg) is one of the most dangerous toxic pollutants spread throughout the earth. Chronic MeHg intoxication by contaminated food ingestion is the most common threat to human health, including impairment to the developing fetus. The present study aims at investigating the effects of maternal exposure to MeHg during gestation and lactation on the spinal cord of offspring. Pregnant rats received oral doses of MeHg (40 µg/kg/day) over a period of 42 days (21 gestation and 21 lactation). Control animals received the vehicle only. Total mercury concentration was measured in blood samples from offspring collected at the 41st postnatal day. Counting of motor neurons and immunoreactivity for myelin basic protein (MBP) were assessed in the spinal cords in both control and MeHg-intoxicated animals. Our results showed that MeHg promoted an increase in blood Hg levels. In addition, it caused a reduction in the number of spinal cord motor neurons as well as decreased MBP immunoreactivity in the cervical, thoracic and lumbar segments. Our present findings suggest that MeHg intoxication during rat pregnancy and lactation is associated with a pattern of motor neuron degeneration and downregulation of myelin basic protein in different segments of a developing spinal cord. Further studies are needed to establish the effect of MeHg intoxication in both young and adult rats.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Animais , Regulação para Baixo , Feminino , Humanos , Exposição Materna/efeitos adversos , Mercúrio/toxicidade , Compostos de Metilmercúrio/metabolismo , Compostos de Metilmercúrio/toxicidade , Proteína Básica da Mielina/metabolismo , Gravidez , Ratos , Medula Espinal/metabolismo
10.
Int J Mol Sci ; 23(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35008538

RESUMO

Mercury is a severe environmental pollutant with neurotoxic effects, especially when exposed for long periods. Although there are several evidences regarding mercury toxicity, little is known about inorganic mercury (IHg) species and cerebellum, one of the main targets of mercury associated with the neurological symptomatology of mercurial poisoning. Besides that, the global proteomic profile assessment is a valuable tool to screen possible biomarkers and elucidate molecular targets of mercury neurotoxicity; however, the literature is still scarce. Thus, this study aimed to investigate the effects of long-term exposure to IHg in adult rats' cerebellum and explore the modulation of the cerebellar proteome associated with biochemical and functional outcomes, providing evidence, in a translational perspective, of new mercury toxicity targets and possible biomarkers. Fifty-four adult rats were exposed to 0.375 mg/kg of HgCl2 or distilled water for 45 days using intragastric gavage. Then, the motor functions were evaluated by rotarod and inclined plane. The cerebellum was collected to quantify mercury levels, to assess the antioxidant activity against peroxyl radicals (ACAPs), the lipid peroxidation (LPO), the proteomic profile, the cell death nature by cytotoxicity and apoptosis, and the Purkinje cells density. The IHg exposure increased mercury levels in the cerebellum, reducing ACAP and increasing LPO. The proteomic approach revealed a total 419 proteins with different statuses of regulation, associated with different biological processes, such as synaptic signaling, energy metabolism and nervous system development, e.g., all these molecular changes are associated with increased cytotoxicity and apoptosis, with a neurodegenerative pattern on Purkinje cells layer and poor motor coordination and balance. In conclusion, all these findings feature a neurodegenerative process triggered by IHg in the cerebellum that culminated into motor functions deficits, which are associated with several molecular features and may be related to the clinical outcomes of people exposed to the toxicant.


Assuntos
Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Intoxicação do Sistema Nervoso por Mercúrio/metabolismo , Mercúrio/toxicidade , Doenças Neurodegenerativas/metabolismo , Proteoma/metabolismo , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Metabolismo Energético/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Compostos de Metilmercúrio/toxicidade , Córtex Motor/efeitos dos fármacos , Córtex Motor/metabolismo , Peróxidos/metabolismo , Proteômica/métodos , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA