Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Front Bioeng Biotechnol ; 12: 1348856, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322790

RESUMO

Chronic wound management is an intractable medical and social problem, affecting the health of millions worldwide. Decellularized extracellular matrix (dECM)-based materials possess remarkable biological properties for tissue regeneration, which have been used as commercial products for skin regeneration in clinics. However, the complex external environment and the longer chronic wound-healing process hinder the application of pure dECM materials. dECM-based composite materials are constructed to promote the healing process of different wounds, showing noteworthy functions, such as anti-microbial activity and suitable degradability. Moreover, fabrication technologies for designing wound dressings with various forms have expanded the application of dECM-based composite materials. This review provides a summary of the recent fabrication technologies for building dECM-based composite materials, highlighting advances in dECM-based molded hydrogels, electrospun fibers, and bio-printed scaffolds in managing wounds. The associated challenges and prospects in the clinical application of dECM-based composite materials for wound healing are finally discussed.

2.
Nanoscale ; 16(4): 1633-1649, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38168813

RESUMO

Over the years, bioinspired mineralization-based approaches have been applied to synthesize multifunctional organic-inorganic nanocomposites. These nanocomposites can address the growing demands of modern biomedical applications. Proteins, serving as vital biological templates, play a pivotal role in the nucleation and growth processes of various organic-inorganic nanocomposites. Protein-mineralized nanomaterials (PMNMs) have attracted significant interest from researchers due to their facile and convenient preparation, strong physiological activity, stability, impressive biocompatibility, and biodegradability. Nevertheless, few comprehensive reviews have expounded on the progress of these nanomaterials in biomedicine. This article systematically reviews the principles and strategies for constructing nanomaterials using protein-directed biomineralization and biomimetic mineralization techniques. Subsequently, we focus on their recent applications in the biomedical field, encompassing areas such as bioimaging, as well as anti-tumor, anti-bacterial, and anti-inflammatory therapies. Furthermore, we discuss the challenges encountered in practical applications of these materials and explore their potential in future applications. This review aspired to catalyze the continued development of these bioinspired nanomaterials in drug development and clinical diagnosis, ultimately contributing to the fields of precision medicine and translational medicine.


Assuntos
Nanocompostos , Neoplasias , Humanos , Medicina de Precisão , Biomimética , Nanocompostos/uso terapêutico , Nanomedicina Teranóstica , Neoplasias/terapia
3.
Heliyon ; 10(1): e23779, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38223705

RESUMO

As implantable materials, titanium, and its alloys have garnered enormous interest from researchers for dental and orthopedic procedures. Despite their success in wide clinical applications, titanium, and its alloys fail to stimulate osteogenesis, resulting in poor bonding strength with surrounding bone tissue. Optimizing the surface topology and altered compositions of titanium and titanium-based alloys substantially promotes peri-implant bone regeneration. This review summarizes the utilization and importance of various osteogenesis components loaded onto titanium and its alloys. Further, different surface-modification methods and the release efficacy of loaded substances are emphasized. Finally, we summarize the article with prospects. We believe that further investigation studies must focus on identifying novel loading components, exploring various innovative, optimized surface-modification methods, and developing a sustained-release system on implant surfaces to improve peri-implant bone formation.

4.
Regen Biomater ; 11: rbad097, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38173769

RESUMO

The inadequate quantity of hydrogen peroxide (H2O2) in cancer cells promptly results in the constrained success of chemodynamic therapy (CDT). Significant efforts made throughout the years; nevertheless, researchers are still facing the great challenge of designing a CDT agent and securing H2O2 supply within the tumor cell. In this study, taking advantage of H2O2 level maintenance mechanism in cancer cells, a nanozyme-based bimetallic metal-organic frameworks (MOFs) tandem reactor is fabricated to elevate intracellular H2O2 levels, thereby enhancing CDT. In addition, under near-infrared excitation, the upconversion nanoparticles (UCNPs) loaded into the MOFs can perform photocatalysis and generate hydrogen, which increases cellular susceptibility to radicals induced from H2O2, inhibits cancer cell energy, causes DNA damages and induces tumor cell apoptosis, thus improving CDT therapeutic efficacy synergistically. The proposed nanozyme-based bimetallic MOFs-mediated CDT and UCNPs-mediated hydrogen therapy act as combined therapy with high efficacy and low toxicity.

5.
Regen Biomater ; 11: rbad107, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38173774

RESUMO

Despite the considerable advancements in fabricating polymeric-based scaffolds for tissue engineering, the clinical transformation of these scaffolds remained a big challenge because of the difficulty of simulating native organs/tissues' microenvironment. As a kind of natural tissue-derived biomaterials, decellularized extracellular matrix (dECM)-based scaffolds have gained attention due to their unique biomimetic properties, providing a specific microenvironment suitable for promoting cell proliferation, migration, attachment and regulating differentiation. The medical applications of dECM-based scaffolds have addressed critical challenges, including poor mechanical strength and insufficient stability. For promoting the reconstruction of damaged tissues or organs, different types of dECM-based composite platforms have been designed to mimic tissue microenvironment, including by integrating with natural polymer or/and syntenic polymer or adding bioactive factors. In this review, we summarized the research progress of dECM-based composite scaffolds in regenerative medicine, highlighting the critical challenges and future perspectives related to the medical application of these composite materials.

6.
Small ; 20(2): e2305321, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37658493

RESUMO

2D MXene-Ti3 C2 Tx holds great promise in various electronic applications, especially for electromagnetic interference (EMI) shielding devices and supercapacitors. Ti3 C2 Tx synthesis typically involves the use of hazardous fluorine-containing chemicals that can result in the formation of inert fluoride functional groups on the surface of Ti3 C2 Tx , severely degrading its properties and posing a threat to the performance of electron transfer among electrical devices. Herein, a supercritical carbon dioxide-based ternary solution (scCO2 /DMSO/HCl) to produce fluoride-free Ti3 C2 Tx in mild conditions (via 0.5 m HCl, 20 MPa, 32 °C) is reported. The fluorine-free Ti3 C2 Tx films electrode presents an excellent gravimetric capacitance of 320 F g-1 at 2 mV s-1 in 1 m H2 SO4 . Besides, it is demonstrated that fluorine-free Ti3 C2 Tx films exhibit outstanding EMI shielding efficiency of 53.12 dB at 2.5 µm thickness. The findings offer a mild and practical approach to producing fluoride-free Ti3 C2 Tx and open opportunities for exploring MXenes' potential applications in various fields.

7.
Bioact Mater ; 33: 311-323, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38076647

RESUMO

The current strategy of co-delivering copper ions and disulfiram (DSF) to generate cytotoxic CuET faces limitations in achieving rapid and substantial CuET production, specifically in tumor lesions. To overcome this challenge, we introduce a novel burst-release cascade reactor composed of phase change materials (PCMs) encapsulating ultrasmall Cu2-xSe nanoparticles (NPs) and DSF (DSF/Cu2-xSe@PCM). Once triggered by second near-infrared (NIR-II) light irradiation, the reactor swiftly releases Cu2-xSe NPs and DSF, enabling catalytic reactions that lead to the rapid and massive production of Cu2-xSe-ET complexes, thereby achieving in situ chemotherapy. The mechanism of the burst reaction is due to the unique properties of ultrasmall Cu2-xSe NPs, including their small size, multiple defects, and high surface activity. These characteristics allow DSF to be directly reduced and chelated on the surface defect sites of Cu2-xSe, forming Cu2-xSe-ET complexes without the need for copper ion release. Additionally, Cu2-xSe-ET has demonstrated a similar (to CuET) anti-tumor activity through increased autophagy, but with even greater potency due to its unique two-dimensional-like structure. The light-triggered cascade of interlocking reactions, coupled with in situ explosive generation of tumor-suppressive substances mediated by the size and valence of Cu2-xSe, presents a promising approach for the development of innovative nanoplatforms in the field of precise tumor chemotherapy.

8.
Adv Healthc Mater ; 13(10): e2303582, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38160261

RESUMO

Despite their unique characteristics, 2D MXenes with sole photothermal conversion ability are required to explore their superfluous abilities in biomedicine. The small-molecule-based chemotherapeutics suffer from various shortcomings of time-consuming and expensiveness concerning theoretical and performance (preclinical/clinical) checks. This study demonstrates the fabrication of Ti3C2 MXene nanosheets (TC-MX NSs) and subsequent decoration with transition metal oxides, that is, copper oxide (Cu2O/MX, CO-MX NCs) as drugless nanoarchitectonics for synergistic photothermal (PTT)-chemodynamic therapeutic (CDT) efficacies. Initially, the monolayer/few-layered TC-MX NSs are prepared using the chemical etching-assisted ultrasonic exfoliation method and then deposited with Cu2O nanoconstructs using the in situ reduction method. Further, the photothermal ablation under near-infrared (NIR)-II laser irradiation shows PTT effects of CO-MX NCs. The deposited Cu2O on TC-MX NSs facilitates the release of copper (Cu+) ions in the acidic microenvironment intracellularly for Fenton-like reaction-assisted CDT effects and enriched PTT effects synergistically. Mechanistically, these deadly free radicals intracellularly imbalance the glutathione (GSH) levels and result in mitochondrial dysfunction, inducing apoptosis of 4T1 cells. Finally, the in vivo investigations in BALB/c mice confirm the substantial ablation of breast carcinoma. Together, these findings demonstrate the potential synergistic PTT-CDT effects of the designed CO-MX NCs as drugless nanoarchitectonics against breast carcinoma.


Assuntos
Neoplasias da Mama , Nanopartículas , Neoplasias , Animais , Camundongos , Humanos , Feminino , Cobre/farmacologia , Óxidos/farmacologia , Apoptose , Glutationa , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Peróxido de Hidrogênio , Microambiente Tumoral
9.
Regen Biomater ; 10: rbad076, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808956

RESUMO

Bacterial infections cause severe health conditions, resulting in a significant economic burden for the public health system. Although natural phytochemicals are considered promising anti-bacterial agents, they suffer from several limitations, such as poor water solubility and low bioavailability in vivo, severely restricting their wide application. Herein, we constructed a near-infrared (NIR)-responsive carrier-free berberine hydrochloride (BH, phytochemicals)/indocyanine green (ICG, photosensitizer) nanoparticles (BI NPs) for synergistic antibacterial of an infected wound. Through electrostatic interaction and π-π stacking, the hydrophobic BH and amphiphilic ICG are initially self-assembled to generate carrier-free nanoparticles. The obtained BI NPs demonstrated NIR-responsive drug release behavior and better photothermal conversion efficiency of up to 36%. In addition, BI NPs stimulated by NIR laser exhibited remarkable antibacterial activity, which realized the synergistic antibacterial treatment and promoted infected wound healing. In summary, the current research results provided a candidate strategy for self-assembling new BI NPs to treat bacterial infections synergistically.

10.
Ultrason Sonochem ; 100: 106617, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37769588

RESUMO

The rapid spread and uncontrollable evolution of antibiotic-resistant bacteria have already become urgent global to treat bacterial infections. Sonodynamic therapy (SDT), a noninvasive and effective therapeutic strategy, has broadened the way toward dealing with antibiotic-resistant bacteria and biofilms, which base on ultrasound (US) with sonosensitizer. Sonosensitizer, based on small organic molecules or inorganic nanoparticles, is essential to the SDT process. Thus, it is meaningful to design a sonosensitizer-loaded nanoplatform and synthesize the nanoplatform with an efficient SDT effect. In this review, we initially summarize the probable SDT-based antibacterial mechanisms and systematically discuss the current advancement in different SDT-based nanoplatform (including nanoplatform for organic small-molecule sonosensitizer delivery and nanoplatform as sonosensitizer) for bacterial infection therapy. In addition, the biomedical applications of SDT-involved multifunctional nanoplatforms are also discussed. We believe the innovative SDT-based nanoplatforms would become a highly efficient next-generation noninvasive therapeutic tool for combating bacterial infection.


Assuntos
Infecções Bacterianas , Nanopartículas , Terapia por Ultrassom , Humanos , Linhagem Celular Tumoral , Infecções Bacterianas/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Espécies Reativas de Oxigênio
11.
Small ; 19(52): e2304781, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37635095

RESUMO

Metal oxides with diverse compositions and structures have garnered considerable interest from researchers in various reactions, which benefits from transmission electron microscopy (TEM) in determining their morphologies, phase, structural and chemical information. Recent breakthroughs have made liquid-phase TEM a promising imaging platform for tracking the dynamic structure, morphology, and composition evolution of metal oxides in solution under work conditions. Herein, this review introduces the recent advances in liquid cells, especially closed liquid cell chips. Subsequently, the recent progress including particle growth, phase transformation, self-assembly, core-shell nanostructure growth, and chemical etching are introduced. With the late technical advances in TEM and liquid cells, liquid-phase TEM is used to characterize many fundamental processes of metal oxides for CO2 reduction and water-splitting reactions. Finally, the outlook and challenges in this research field are discussed. It is believed this compilation inspires and stimulates more efforts in developing and utilizing in situ liquid-phase TEM for metal oxides at the atomic scale for different applications.

12.
Regen Biomater ; 10: rbad069, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37641591

RESUMO

Atherosclerosis (AS) has emerged as one of the prevalent arterial vascular diseases characterized by plaque and inflammation, primarily causing disability and mortality globally. Drug therapy remains the main treatment for AS. However, a series of obstacles hinder effective drug delivery. Nature, from natural micro-/nano-structural biological particles like natural cells and extracellular vesicles to the distinctions between the normal and pathological microenvironment, offers compelling solutions for efficient drug delivery. Nature-inspired nanocarriers of synthetic stimulus-responsive materials and natural components, such as lipids, proteins and membrane structures, have emerged as promising candidates for fulfilling drug delivery needs. These nanocarriers offer several advantages, including prolonged blood circulation, targeted plaque delivery, targeted specific cells delivery and controlled drug release at the action site. In this review, we discuss the nature-inspired nanocarriers which leverage the natural properties of cells or the microenvironment to improve atherosclerotic drug therapy. Finally, we provide an overview of the challenges and opportunities of applying these innovative nature-inspired nanocarriers.

13.
Colloids Surf B Biointerfaces ; 227: 113387, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37285669

RESUMO

Cancer has emerged as one of the severe ailments due to the uncontrolled proliferation rate of cells, accounting for millions of deaths annually. Despite the availability of various treatment strategies, including surgical interventions, radiation, and chemotherapy, tremendous advancements in the past two decades of research have evidenced the generation of different nanotherapeutic designs toward providing synergistic therapy. In this study, we demonstrate the assembly of a versatile nanoplatform based on the hyaluronic acid (HA)-coated molybdenum dioxide (MoO2) assemblies to act against breast carcinoma. The hydrothermal approach-assisted MoO2 constructs are immobilized with doxorubicin (DOX) molecules on the surface. Further, these MoO2-DOX hybrids are encapsulated with the HA polymeric framework. Furthermore, the versatile nanocomposites of HA-coated MoO2-DOX hybrids are systematically characterized using various characterization techniques, and explored biocompatibility in the mouse fibroblasts (L929 cell line), as well as synergistic photothermal (808-nm laser irradiation for 10 min, 1 W/cm2) and chemotherapeutic properties against breast carcinoma (4T1 cells). Finally, the mechanistic views concerning the apoptosis rate are explored using the JC-1 assay to measure the intracellular mitochondrial membrane potential (MMP) levels. In conclusion, these findings indicated excellent photothermal and chemotherapeutic efficacies, exploring the enormous potential of MoO2 composites against breast cancer.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Animais , Camundongos , Fototerapia , Doxorrubicina , Molibdênio/farmacologia , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
14.
J Biomater Sci Polym Ed ; 34(12): 1683-1701, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37058125

RESUMO

Sodium alginate is a polyanionic natural polysaccharide polymer widely used in tissue engineering. However, the lack of binding domains for interaction with cells limits its application in regenerative medicine. This study designed a kind of galactosylated sodium alginate (G-SA) material with improved galactose grafting rate by EDC/NHS activation of carboxyl groups in MES buffer and subsequently cross-linking by Ca2+ aims to enhance the adherence behavior of HepG2 cells on alginate substrate. The synthesized G-SA was characterized by Fourier transform infrared spectra and nuclear magnetic resonance spectroscopy. G-SA exhibited good biocompatibility and significantly enhanced the adhesion behavior of HepG2 cells on its surface. Furthermore, we demonstrated that the effect of G-SA concentration in enhancing cell adhesion was diminished at higher than 2% w/v. Finally, the suitability of G-SA material is investigated for 3D printing, demonstrating that HepG2 cells could maintain high viability and excellent printability in the interior of the gel. In addition, cells could multiply and grow into cell spheroids with an average size of 200 µm in G-SA scaffolds. These results indicated that galactosylated sodium alginate material could be used as a 3D culture system that could be effective for engineering liver cancer models.


Assuntos
Alginatos , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Alginatos/química , Células Hep G2 , Engenharia Tecidual/métodos , Polímeros , Impressão Tridimensional
15.
Regen Biomater ; 10: rbad014, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36915713

RESUMO

Cancer metastasis is the primary cause of all cancer-related deaths due to the lack of effective targeted drugs that simultaneously block multiple signaling pathways that drive the dissemination and growth of cancer cells. The unique proline isomerase Pin1 activates numerous cancer pathways, but its role in cancer metastasis and the inhibitory efficacy of Pin1 inhibitors on cancer metastasis are unknown. Moreover, the applicability of Pin1 inhibitor-all-trans retinoic acid (ATRA) is limited due to its several drawbacks. Herein, uniform ATRA-loaded polylactic acid-polyethylene glycol block copolymer nanoparticles (ATRA-NPs) with high encapsulation efficiency, good cellular uptake, excellent controlled release performance and pharmacokinetics are developed using supercritical carbon dioxide processing combined with an optimized design. ATRA-NPs exhibited excellent biosafety and significant inhibition on the growth and metastasis of hepatocellular carcinoma. Pin1 played a key role in cancer metastasis and was the main target of ATRA-NPs. ATRA-NPs exerted their potent anti-metastatic effect by inhibiting Pin1 and then simultaneously blocking multiple signaling pathways and cancer epithelial-mesenchymal progression. Since ATRA-NPs could effectively couple the inhibition of cancer cell dissemination with cancer growth, it provided a novel therapeutic strategy for efficiently inhibiting cancer metastasis.

16.
Bioact Mater ; 21: 1-19, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36017071

RESUMO

Although nano-immunotherapy has advanced dramatically in recent times, there remain two significant hurdles related to immune systems in cancer treatment, such as (namely) inevitable immune elimination of nanoplatforms and severely immunosuppressive microenvironment with low immunogenicity, hampering the performance of nanomedicines. To address these issues, several immune-regulating camouflaged nanocomposites have emerged as prevailing strategies due to their unique characteristics and specific functionalities. In this review, we emphasize the composition, performances, and mechanisms of various immune-regulating camouflaged nanoplatforms, including polymer-coated, cell membrane-camouflaged, and exosome-based nanoplatforms to evade the immune clearance of nanoplatforms or upregulate the immune function against the tumor. Further, we discuss the applications of these immune-regulating camouflaged nanoplatforms in directly boosting cancer immunotherapy and some immunogenic cell death-inducing immunotherapeutic modalities, such as chemotherapy, photothermal therapy, and reactive oxygen species-mediated immunotherapies, highlighting the current progress and recent advancements. Finally, we conclude the article with interesting perspectives, suggesting future tendencies of these innovative camouflaged constructs towards their translation pipeline.

17.
RSC Adv ; 12(53): 34318-34324, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36545594

RESUMO

Photodynamic therapy (PDT), which relies on the photo-induced reactive oxygen species (ROS) to trigger tumor cells apoptosis, has attracted intense focus over the decades due to the minimum invasion, high-precision and controllable therapeutic processes. Tetra(4-carboxyphenyl) porphin (TCPP), as an effective PDT photosensitizer, can harness photons and generate singlet oxygen species (1O2) upon illumination; however, poor solubility and low loading rate greatly limit its further use. Although TCPP-based metal-organic-frameworks (MOFs) has been proposed to address these concerns, the relatively large size still limits their biomedical applications. Therefore, in this study, TCPP molecules are coordinated with Yb3+, growing into 2D Yb-TCPP MOFs by a wet chemical method; the as-prepared Yb-TCPP MOFs are around 200 nm in size and possess high 1O2 generation efficiency with low cytotoxicity. Due to TCPP is appeared as the organic frameworks of Yb-TCPP MOFs, the low loading rate problem is largely addressed; in addition, the absorbance of Yb-TCPP MOFs has been greatly expanded compared with free TCPP molecules due to the coordination with Yb3+, allowing the illumination at longer wavelength range, e.g. 655 nm, that possesses high penetration depth and low phototoxicity. Overall, we have prepared 2D Yb-TCPP MOFs suitable for the in vitro anticancer effect, revealing the potential of Yb-TCPP MOFs as the future anticancer agent.

18.
Regen Biomater ; 9: rbac080, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330352

RESUMO

Aripiprazole (ARI), a second-generation atypical antipsychotic drug approved for schizophrenia treatment, shows good efficacy against depression. However, the poorly aqueous solubility of ARI leads to low bioavailability and increased dose-related side effects, seriously limiting its application in pharmaceutics. Herein, we demonstrated the fabrication of ARI and poly (methyl vinyl ether-co-maleic anhydride) (PVMMA) composite nanoparticles (PA NPs) using the supercritical antisolvent (SAS) process for enhancing its water-solubility and curative anti-depressant effects. Initially, the optimal experimental conditions (ARI/PVMMA mass ratio of 1:6, pressure of 10 MPa, and solution flow rate of 0.75 ml min-1) were determined by a 23 factorial experimental design, resulting in the PA NPs with an excellent particle morphology. In vitro cell experiments showed that PA NPs significantly inhibited the inflammatory response caused by the microglia activation induced by lipopolysaccharide (LPS). Similarly, mice behavioral tests demonstrated that PA NPs significantly improved LPS-induced depression-like behavior. Importantly, compared with free ARI, the LPS-induced activation of microglia in the mouse brain and the expression of inflammatory factors in serum were significantly reduced after treatment with PA NPs. Together, the innovative PA NPs designed by SAS process might provide a candidate for developing new ARI-based nano-formulations.

19.
ACS Omega ; 7(44): 40596-40602, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36385892

RESUMO

Lanthanide-doped upconversion nanoparticles (UCNPs) and cesium lead halide perovskite quantum dots (PeQDs) are highly compatible with each other: UCNPs produce anti-Stokes upconversion luminescence (UCL) under near-infrared (NIR) excitation and the emissive profiles of PeQDs can be conveniently tuned by varying the halide composition ratio. Therefore, in this study, UCNPs and PeQDs are mixed together, producing colorful UCL under 980 nm laser excitation. In addition, ZnI2 is used to vary the halide composition ratio of PeQDs and manipulate UCL in situ, thus adding more flexibility in UCL regulation. Finally, based on the above-mentioned discussion, a double-encrypted anticounterfeiting pattern is generated via sequentially printing ZnI2 solution and UCNP suspension on an A4 paper. Using PeQDs as the decrypting reagent, under the NIR excitation and decryption channel, the hidden information can be fully decrypted. The combination of UCNPs and PeQDs greatly expands the upconversion possibility, offers more feasibility in UCL regulation, and further promotes the practical applications.

20.
Int J Pharm ; 629: 122348, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36336204

RESUMO

Indocyanine green (ICG), a water-soluble near-infrared (NIR) photosensitizer, has been enormously regarded in tumor diagnosis and phototherapy. Although tremendous progress in establishing the nanocarrier-based delivery systems has been explored, several limitations of low ICG encapsulation and sophisticated fabrication process remain significant challenges in producing nanoplatforms, limiting the theranostic outcomes of ICG. According to the unique advantages of the supercritical antisolvent (SAS) process and solution casting method, a novel combination approach to obtain the ICG-loaded nanoparticles (ICG-PLO NPs) is demonstrated, in which SAS assisted-ICG nanoparticles (ICG NPs) are coated with polypeptide poly-l-ornithine (PLO) using solution casting approach. This unique nanoplatform with ultra-high drug encapsulation efficiency remarkably improved the aqueous and photothermal stability of ICG. Notably, the coating of PLO could improve the internalization level in cells and anticancer effect in vivo, comprehensively augmenting the cancer phototherapy effect of ICG. Together, the findings of novel particle formation by integrated strategy would certainly broaden the applications of supercritical fluid (SCF) technology, potentiating the design of nano-formulations of ICG for clinical translation.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Verde de Indocianina , Fototerapia , Nanopartículas/uso terapêutico , Polímeros/uso terapêutico , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA