Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Chem ; 405(2): 119-128, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36869860

RESUMO

Salvia miltiorrhiza (Salvia miltiorrhiza) root, as a traditional herb, is widely applied to pharmacotherapy for vascular system disease. In this study, we elucidate the therapy mechanism of Salvia miltiorrhiza by using a model of hindlimb ischemia. Blood perfusion measurement showed that intravenous administration of the Water Extract of Salvia miltiorrhiza (WES) could facilitate damaged hindlimb blood flow recovery and blood vessel regeneration. In vitro mRNA screen assay in cultured human umbilical vein endothelial cells (HUVECs) show that WES induced increased NOS3, VEGFA, and PLAU mRNA levels. Endothelial NOS (eNOS) promotor reporter analysis revealed that WES and the major ingredients danshensu (DSS) could enhance eNOS promoter activity. Additionally, we found that WES and its ingredients, including DSS, protocatechuic aldehyde (PAI), and salvianolic acid A (SaA), promoted HUVECs growth by the endothelial cell viability assays. A mechanistic approach confirmed that WES augments HUVECs proliferation through the activation of extracellular signal-regulated kinase (ERK) signal pathway. This study reveals that WES promotes ischemic remodeling and angiogenesis through its multiple principal ingredients, which target and regulate multiple sites of the network of the blood vessel endothelial cell regenerating process.


Assuntos
Salvia miltiorrhiza , Animais , Humanos , Isquemia/tratamento farmacológico , Células Endoteliais da Veia Umbilical Humana , Membro Posterior , RNA Mensageiro
2.
Antib Ther ; 6(4): 253-264, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38075240

RESUMO

Glioblastoma (GBM) is the most common and lethal primary brain tumor. The development of alternative humanized mouse models with fully functional human immune cells will potentially accelerate the progress of GBM immunotherapy. We successfully generated humanized DRAG (NOD.Rag1KO.IL2RγcKO) mouse model by transplantation of human DR4+ hematopoietic stem cells (hHSCs), and effectively grafted GBM patient-derived tumorsphere cells to form xenografted tumors intracranially. The engrafted tumors recapitulated the pathological features and the immune cell composition of human GBM. Administration of anti-human PD-1 antibodies in these tumor-bearing humanized DRAG mice decreased the major tumor-infiltrating immunosuppressive cell populations, including CD4+PD-1+ and CD8+PD-1+ T cells, CD11b+CD14+HLA-DR+ macrophages, CD11b+CD14+HLA-DR-CD15- and CD11b+CD14-CD15+ myeloid-derived suppressor cells, indicating the humanized DRAG mice as a useful model to test the efficacy of GBM immunotherapy. Taken together, these results suggest that the humanized DRAG mouse model is a reliable preclinical platform for studying brain cancer immunotherapy and beyond.

3.
Front Oncol ; 13: 1279806, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37881491

RESUMO

Glioblastoma (GBM) is fatal and the study of therapeutic resistance, disease progression, and drug discovery in GBM or glioma stem cells is often hindered by limited resources. This limitation slows down progress in both drug discovery and patient survival. Here we present a genetically engineered human cerebral organoid model with a cancer-like phenotype that could provide a basis for GBM-like models. Specifically, we engineered a doxycycline-inducible vector encoding shRNAs enabling depletion of the TP53, PTEN, and NF1 tumor suppressors in human cerebral organoids. Designated as inducible short hairpin-TP53-PTEN-NF1 (ish-TPN), doxycycline treatment resulted in human cancer-like cerebral organoids that effaced the entire organoid cytoarchitecture, while uninduced ish-TPN cerebral organoids recapitulated the normal cytoarchitecture of the brain. Transcriptomic analysis revealed a proneural GBM subtype. This proof-of-concept study offers a valuable resource for directly investigating the emergence and progression of gliomas within the context of specific genetic alterations in normal cerebral organoids.

6.
STAR Protoc ; 4(1): 102049, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36861832

RESUMO

Understanding the glioblastoma (GBM) immune microenvironment and development of clinical treatment drugs rely on suitable preclinical GBM models. Here, we present a protocol to establish syngeneic orthotopic glioma mouse models. We also describe the steps to intracranially deliver immunotherapeutic peptides and monitor the treatment response. Finally, we show how to assess the tumor immune microenvironment with treatment outcomes. For complete details on the use and execution of this protocol, please refer to Chen et al. (2021).1.


Assuntos
Glioblastoma , Glioma , Animais , Camundongos , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/patologia , Glioblastoma/patologia , Modelos Animais de Doenças , Imunoterapia , Microambiente Tumoral
7.
Nat Cell Biol ; 25(3): 493-507, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36849558

RESUMO

How abnormal neurodevelopment relates to the tumour aggressiveness of medulloblastoma (MB), the most common type of embryonal tumour, remains elusive. Here we uncover a neurodevelopmental epigenomic programme that is hijacked to induce MB metastatic dissemination. Unsupervised analyses of integrated publicly available datasets with our newly generated data reveal that SMARCD3 (also known as BAF60C) regulates Disabled 1 (DAB1)-mediated Reelin signalling in Purkinje cell migration and MB metastasis by orchestrating cis-regulatory elements at the DAB1 locus. We further identify that a core set of transcription factors, enhancer of zeste homologue 2 (EZH2) and nuclear factor I X (NFIX), coordinates with the cis-regulatory elements at the SMARCD3 locus to form a chromatin hub to control SMARCD3 expression in the developing cerebellum and in metastatic MB. Increased SMARCD3 expression activates Reelin-DAB1-mediated Src kinase signalling, which results in a MB response to Src inhibition. These data deepen our understanding of how neurodevelopmental programming influences disease progression and provide a potential therapeutic option for patients with MB.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Humanos , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Meduloblastoma/genética , Fosforilação , Epigenômica , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular Neuronais/farmacologia , Neoplasias Cerebelares/genética , Epigênese Genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
8.
bioRxiv ; 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36824969

RESUMO

Glioblastoma (GBM) is the most common and lethal primary brain tumor with high mortality rates and a short median survival rate of about 15 months despite intensive multimodal treatment of maximal surgical resection, radiotherapy, and chemotherapy. Although immunotherapies have been successful in the treatment of various cancers, disappointing results from clinical trials for GBM immunotherapy represent our incomplete understanding. The development of alternative humanized mouse models with fully functional human immune cells will potentially accelerate the progress of GBM immunotherapy. In this study, we developed a humanized DRAG (NOD.Rag1KO.IL2RγcKO) mouse model, in which the human hematopoietic stem cells (HSCs) were well-engrafted and subsequently differentiated into a full lineage of immune cells. Using this humanized DRAG mouse model, GBM patient-derived tumorsphere lines were successfully engrafted to form xenografted tumors, which can recapitulate the pathological features and the immune cell composition of human GBM. Importantly, the administration of anti-human PD-1 antibodies in these DRAG mice bearing a GBM patient-derived tumorsphere line resulted in decreasing the major tumor-infiltrating immunosuppressive cell populations, including CD4 + PD-1 + and CD8 + PD-1 + T cells, CD11b + CD14 + HLA-DR + macrophages, CD11b + CD14 + HLA-DR - CD15 - and CD11b + CD14 - CD15 + myeloid-derived suppressor cells, indicating the humanized DRAG mouse model as a useful model to test the efficacy of immune checkpoint inhibitors in GBM immunotherapy. Together, these results suggest that humanized DRAG mouse models are a reliable preclinical platform for brain cancer immunotherapy and beyond.

9.
Cancer Discov ; 12(12): 2820-2837, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36122307

RESUMO

Isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM) has a dismal prognosis. A better understanding of tumor evolution holds the key to developing more effective treatment. Here we study GBM's natural evolutionary trajectory by using rare multifocal samples. We sequenced 61,062 single cells from eight multifocal IDH wild-type primary GBMs and defined a natural evolution signature (NES) of the tumor. We show that the NES significantly associates with the activation of transcription factors that regulate brain development, including MYBL2 and FOSL2. Hypoxia is involved in inducing NES transition potentially via activation of the HIF1A-FOSL2 axis. High-NES tumor cells could recruit and polarize bone marrow-derived macrophages through activation of the FOSL2-ANXA1-FPR1/3 axis. These polarized macrophages can efficiently suppress T-cell activity and accelerate NES transition in tumor cells. Moreover, the polarized macrophages could upregulate CCL2 to induce tumor cell migration. SIGNIFICANCE: GBM progression could be induced by hypoxia via the HIF1A-FOSL2 axis. Tumor-derived ANXA1 is associated with recruitment and polarization of bone marrow-derived macrophages to suppress the immunoenvironment. The polarized macrophages promote tumor cell NES transition and migration. This article is highlighted in the In This Issue feature, p. 2711.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Isocitrato Desidrogenase/genética , Prognóstico , Hipóxia/genética
11.
J Chromatogr A ; 1673: 463202, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35691108

RESUMO

We have recently demonstrated the remarkable performances of liquid chromatography (LC) using 2-µm-i.d. open tubular (OT) columns; peak capacities of 2000+ within less than three hours have been routinely obtained at an elution pressure of around 100 bar or less. However, only a small number of researchers have been involved in the research in this area; part of the reason is due to the issues associated with setting up open tubular liquid chromatography (OTLC) systems. While cautions should be taken here and there in carrying out separations, but none of the issues can inhibit us from performing OTLC separations. Therefore, we feel it desirable to write a tutorial on how to build an OTLC system. In this tutorial, we introduce the key components for the apparatus, how to construct/prepare them or where to purchase them, and how to assemble them together into a complete system. We further discuss the advantages and disadvantages of the system; we mention particularly the practical issues from using the narrow (2-µm-i.d.) columns and how to mitigate these issues.


Assuntos
Cromatografia Líquida , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos
12.
Diabetes Obes Metab ; 24(9): 1721-1733, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35546452

RESUMO

AIM: To show that depletion of pancreatic macrophages impairs gestational beta cell proliferation and leads to glucose intolerance. MATERIALS AND METHODS: Genetic animal models were applied to study the effects of depletion of pancreatic macrophges on gestational beta-cell proliferaiton and glucose response. The crosstalk between macrophages and beta-cells was studied in vivo using beta-cell-specific extracellular-signal-regulated kinase 5 (ERK5) knockout and epidermal growth receptor (EGFR) knockout mice, and in vitro using a co-culture system. RESULTS: Beta cell-derived placental growth factor (PlGF) recruited naïve macrophages and polarized them towards an M2-like phenotype. These macrophages then secreted epidermal growth factor (EGF), which activated extracellular signal-regulated kinase 5 (ERK5) signalling in beta cells to promote gestational beta cell proliferation. On the other hand, activation of ERK5 signalling in beta cells likely, in turn, enhanced the production and secretion of PlGF by beta cells. CONCLUSIONS: Our study shows a regulatory loop between macrophages and beta cells through PlGF/EGF/ERK5 signalling cascades to regulate gestational beta cell growth.


Assuntos
Fator de Crescimento Epidérmico , Proteína Quinase 7 Ativada por Mitógeno , Animais , Proliferação de Células , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Feminino , Macrófagos/metabolismo , Camundongos , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Fator de Crescimento Placentário/metabolismo
13.
Nat Cancer ; 3(5): 629-648, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35422502

RESUMO

Diffuse midline gliomas (DMGs) bearing driver mutations of histone 3 lysine 27 (H3K27M) are incurable brain tumors with unique epigenomes. Here, we generated a syngeneic H3K27M mouse model to study the amino acid metabolic dependencies of these tumors. H3K27M mutant cells were highly dependent on methionine. Interrogating the methionine cycle dependency through a short-interfering RNA screen identified the enzyme methionine adenosyltransferase 2A (MAT2A) as a critical vulnerability in these tumors. This vulnerability was not mediated through the canonical mechanism of MTAP deletion; instead, DMG cells have lower levels of MAT2A protein, which is mediated by negative feedback induced by the metabolite decarboxylated S-adenosyl methionine. Depletion of residual MAT2A induces global depletion of H3K36me3, a chromatin mark of transcriptional elongation perturbing oncogenic and developmental transcriptional programs. Moreover, methionine-restricted diets extended survival in multiple models of DMG in vivo. Collectively, our results suggest that MAT2A presents an exploitable therapeutic vulnerability in H3K27M gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Metionina Adenosiltransferase/metabolismo , Animais , Neoplasias Encefálicas/genética , Epigenoma , Glioma/genética , Histonas/genética , Metionina/genética , Camundongos
14.
iScience ; 24(9): 103014, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34522857

RESUMO

Therapeutic and diagnostic efficacies of small biomolecules and chemical compounds are hampered by suboptimal pharmacokinetics. Here, we developed a repertoire of robust and high-affinity antihuman serum albumin nanobodies (NbHSA) that can be readily fused to small biologics for half-life extension. We characterized the thermostability, binding kinetics, and cross-species reactivity of NbHSAs, mapped their epitopes, and structurally resolved a tetrameric HSA-Nb complex. We parallelly determined the half-lives of a cohort of selected NbHSAs in an HSA mouse model by quantitative proteomics. Compared to short-lived control nanobodies, the half-lives of NbHSAs were drastically prolonged by 771-fold. NbHSAs have distinct and diverse pharmacokinetics, positively correlating with their albumin binding affinities at the endosomal pH. We then generated stable and highly bioactive NbHSA-cytokine fusion constructs "Duraleukin" and demonstrated Duraleukin's high preclinical efficacy for cancer treatment in a melanoma model. This high-quality and versatile Nb toolkit will help tailor drug half-life to specific medical needs.

15.
J Clin Invest ; 131(16)2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34228644
16.
Pharmacol Res ; 169: 105617, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33872811

RESUMO

Traditional Chinese multi-herb-combined prescriptions usually show better performance than a single agent since a group of effective compounds interfere multiple disease-relevant targets simultaneously. Huang-Lian-Jie-Du decoction is a remedy made of four herbs that are widely used to treat oral ulcers, gingivitis, and periodontitis. However, the active ingredients and underlying mechanisms are not clear. To address these questions, we prepared a water extract solution of Huang-Lian-Jie-Du decoction (HLJDD), called it as WEH (Water Extract Solution of HLJDD), and used it to treat LPS-induced systemic inflammation in mice. We observed that WEH attenuated inflammatory responses including reducing production of cytokines, chemokines and interferons (IFNs), further attenuating emergency myelopoiesis, and preventing mice septic lethality. Upon LPS stimulation, mice pretreated with WEH increased circulating Ly6C- patrolling and splenic Ly6C+ inflammatory monocytes. The acute myelopoiesis related transcriptional factor profile was rearranged by WEH. Mechanistically we confirmed that WEH interrupted LPS/TLR4/CD14 signaling-mediated downstream signaling pathways through its nine principal ingredients, which blocked LPS stimulated divergent signaling cascades, such as activation of NF-κB, p38 MAPK, and ERK1/2. We conclude that the old remedy blunts LPS-induced "danger" signal recognition and transduction process at multiple sites. To translate our findings into clinical applications, we refined the crude extract into a pure multicomponent drug by directly mixing these nine chemical entities, which completely reproduced the effect of protecting mice from lethal septic shock. Finally, we reduced a large number of compounds within a multi-herb water extract to seven-chemical combination that exhibited superior therapeutic efficacy compared with WEH.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Inflamação/tratamento farmacológico , Monócitos/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Fatores de Transcrição/efeitos dos fármacos , Animais , Reprogramação Celular/efeitos dos fármacos , Coptis chinensis , Medicamentos de Ervas Chinesas/administração & dosagem , Citometria de Fluxo , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Extratos Vegetais/administração & dosagem , Células RAW 264.7/efeitos dos fármacos , Fatores de Transcrição/metabolismo
17.
Anal Chem ; 93(10): 4361-4364, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33646756

RESUMO

We have experimentally demonstrated the extraordinarily high resolving power of liquid chromatography (LC) using a narrow open tubular (OT) column. In this work, we show that we can further increase its efficiency, peak capacity, and separation speed by elevating the operation (or column) temperature; all of these three numbers can be improved without mutual compromises. We use a mixture of five amino acids as a sample and show that we can increase the efficiency by 34%-260% and the separation speeds by 7%-10% by raising the operation temperature from 30 to 70 °C. When we use a 2 µm i.d. × 80 cm in length OT column coated with OTMS at a temperature of 70 °C, we can frequently obtain peak capacities of 700-800 within 20-30 min for separating cytochrome C digests. By increasing the column length to 160 cm, we can obtain a peak capacity of 2720 within 143 min for separating a complex peptide sample. This peak capacity is the highest peak capacity to date for one-dimensional LC separations. Importantly, heating the column is easy to implement and does not cost much, and many commercial LC systems already have compartments to control column temperatures. Running LC using a narrow OT column at an elevated temperature should broaden the applications of OT-LC in chemical and biochemical analyses.

18.
Anal Chim Acta ; 1109: 19-26, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32252901

RESUMO

Flow injection chromatography (FIC) or sequential injection chromatography (SIC) is a low-pressure liquid chromatography technique that uses flow injection or sequential injection hardware. Due to the constraints of this hardware, the separation resolution is low; often no more than 3-5 components are resolved. We have recently demonstrated the excellent resolving power of narrow open tubular (OT) columns for various biomolecules, and only moderate elution pressures are needed to carry out these separations. In this paper, we incorporate a narrow OT column with FIC and construct an FIC system using a pressure chamber and two injection valves to implement gradient elution. The resultant system not only improves the resolution but also reduces the system cost. When we use the system to separate peptides from trypsin-digested cytochrome C, we can resolve dozens of peptides (with resolutions of 0.5 or greater) at a speed of 12 samples per hour. When we use this system to separate a mixture containing 3 amino acids, we can base-line resolve these compounds at a speed of 1800 sample per hour.


Assuntos
Aminoácidos/isolamento & purificação , Análise de Injeção de Fluxo/instrumentação , Aminoácidos/química , Cromatografia Líquida/instrumentação
19.
Opt Express ; 28(2): 2037-2044, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32121902

RESUMO

A multilayer metamaterial with switchable functionalities is presented based on the phase-transition property of vanadium dioxide. When vanadium dioxide is in the metallic state, a broadband absorber is formed. Calculated results show that the combination of two absorption peaks enables absorptance more than 90% in the wide spectral range from 0.393 THz to 0.897 THz. Absorption performance is insensitive to polarization at the small incident angle and work well even at the larger incident angle. When vanadium dioxide is in the insulating state, the designed system behaves as a narrowband absorber at the frequency of 0.677 THz. This narrowband absorber shows the advantages of wide angle and polarization insensitivity due to the localized magnetic resonance. Furthermore, the influences of geometrical parameters on the performance of absorptance are discussed. The proposed switchable absorber can be used in various applications, such as selective heat emitter and solar photovoltaic field.

20.
Opt Express ; 27(18): 25196-25204, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31510396

RESUMO

A switchable metamaterial with bifunctionality of absorption and electromagnetically induced transparency is proposed based on the phase-transition characteristic of phase change material-vanadium dioxide. When vanadium dioxide is in the metallic state, an isotropic narrow absorber is obtained in the terahertz region, which consists of a top metallic cross, a middle dielectric layer, and a bottom vanadium dioxide film. By adjusting structure parameters, perfect absorption is realized at the frequency of 0.498 THz. This designed narrow absorber is insensitive to polarization and incident angle. Absorptance can still reach 75% for transverse electric polarization and transverse magnetic polarization at the incident angle of 65∘. When vanadium dioxide is in the insulating state, the top metallic cross will interact with the bottom split ring resonator, and the interaction between them will lead to the appearance of electromagnetically induced transparency. The behavior of electromagnetically induced transparency works well for transverse electric polarization and transverse magnetic polarization at the small incident angle. The designed hybrid metamaterial opens possible avenues for achieving switchable functionalities in a single device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA