Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 43(7): 511-523, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177412

RESUMO

Leukocyte cell-derived chemotaxin 2 (LECT2) is a multifunctional cytokine that can bind to several receptors and mediate distinct molecular pathways in various cell settings. Changing levels of LECT2 have been implicated in multiple human disease states, including cancers. Here, we have demonstrated reduced serum levels of LECT2 in patients with epithelial ovarian cancer (EOC) and down-regulated circulating Lect2 as the disease progresses in a syngeneic mouse ID8 EOC model. Using the murine EOC model, we discovered that loss of Lect2 promotes EOC progression by modulating both tumor cells and the tumor microenvironment. Lect2 inhibited EOC cells' invasive phenotype and suppressed EOC's transcoelomic metastasis by targeting c-Met signaling. In addition, Lect2 downregulation induced the accumulation and activation of myeloid-derived suppressor cells (MDSCs). This fostered an immunosuppressive microenvironment in EOC by inhibiting T-cell activation and skewing macrophages toward an M2 phenotype. The therapeutic efficacy of programmed cell death-1 (PD-1)/PD-L1 pathway blockade for the ID8 model was significantly hindered. Overall, our data highlight multiple functions of Lect2 during EOC progression and reveal a rationale for synergistic immunotherapeutic strategies by targeting Lect2.


Assuntos
Neoplasias Ovarianas , Humanos , Camundongos , Animais , Feminino , Neoplasias Ovarianas/patologia , Carcinoma Epitelial do Ovário/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Imunossupressores , Modelos Animais de Doenças , Microambiente Tumoral/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
2.
Cell Biosci ; 13(1): 118, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37381062

RESUMO

BACKGROUND: Artemisia argyi (A. argyi), also called Chinese mugwort, has been widely used to control pandemic diseases for thousands of years since ancient China due to its anti-microbial infection, anti-allergy, and anti-inflammation activities. Therefore, the potential of A. argyi and its constituents in reducing the infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was investigated in this study. RESULTS: Among the phytochemicals in A. argyi, eriodictyol and umbelliferone were identified to target transmembrane serine protease 2 (TMPRSS2) and angiotensin-converting enzyme 2 (ACE2) proteins, the essential factors for the cellular entry of SARS-CoV-2, in both FRET-based enzymatic assays and molecular docking analyses. These two ingredients of A. argyi suppressed the infection of ACE2-expressed HEK-293 T cells with lentiviral-based pseudo-particles (Vpp) expressing wild-type and variants of SARS-CoV-2 spike (S) protein (SARS-CoV-2 S-Vpp) via interrupting the interaction between S protein and cellular receptor ACE2 and reducing the expressions of ACE2 and TMPRSS2. Oral administration with umbelliferone efficiently prevented the SARS-CoV-2 S-Vpp-induced inflammation in the lung tissues of BALB/c mice. CONCLUSIONS: Eriodictyol and umbelliferone, the phytochemicals of Artemisia argyi, potentially suppress the cellular entry of SARS-CoV-2 by preventing the protein binding activity of the S protein to ACE2.

3.
Anticancer Res ; 42(2): 845-855, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35093882

RESUMO

BACKGROUND/AIM: The poor prognosis and chemoresistance of patients with triple-negative breast cancer (TNBC) urge the development of new therapeutic strategies. Snail mucus has shown its ability against inflammation, a process closely related to tumorigenesis, suggesting a potential anti-cancer activity. MATERIALS AND METHODS: The effect and mechanisms of snail mucus on cell viability were determined by IncuCyte Live-cell analysis and molecular biological methods. The anti-cancer fractions of snail mucus were isolated and identified by medium pressure liquid chromatography (MPLC) and nuclear magnetic resonance (NMR) spectrometry analysis. RESULTS: Snail mucus significantly decreased the viability of TNBC cells with relatively lower cytotoxicity to normal breast epithelial cells and enhanced their response to chemotherapy through activation of Fas signaling by suppressing nucleolin. Two peptide fractions have been identified as the anti-cancer ingredients of the snail mucus. CONCLUSION: Snail mucus can induce programmed cell death via the extrinsic apoptotic pathway and has therapeutic potential by achieving a chemo-sensitizing effect in TNBCs.


Assuntos
Antineoplásicos/farmacologia , Muco , Transdução de Sinais/efeitos dos fármacos , Caramujos , Neoplasias de Mama Triplo Negativas/metabolismo , Receptor fas/metabolismo , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Muco/química , Muco/metabolismo , Caramujos/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia
4.
Cancers (Basel) ; 13(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069116

RESUMO

Hepatocellular carcinoma (HCC) accounts for the majority of primary liver cancers, which is the second most lethal tumor worldwide. Epigenetic deregulation is a common trait observed in HCC. Recently, increasing evidence suggested that the G9a histone methyltransferase might be a novel regulator of HCC development. However, several HCC cell lines were recently noted to have HeLa cell contamination or to have been derived from non-hepatocellular origin, suggesting that functional validation of G9a in proper HCC models is still required. Herein, we first confirmed that higher G9a messenger RNA and protein expression levels were correlated with poor overall survival (OS) and disease-free survival (DFS) rates of HCC patients from The Cancer Genome Atlas (TCGA) dataset and our recruited HCC cohort. In an in vitro functional evaluation of HCC cells, HCC36 (hepatitis B virus-positive (HBV+) and Mahlavu (HBV-)) cells showed that G9a participated in promoting cell proliferation, colony formation, and migration/invasion abilities. Moreover, orthotopic inoculation of G9a-depleted Mahlavu cells in NOD-SCID mice also resulted in a significantly decreased tumor burden compared to the control group. Furthermore, after surveying microRNA (miRNA; miR) prediction databases, we identified the liver-specific miR-122 as a G9a-targeting miRNA. In various HCC cell lines, we observed that miR-122 expression levels tended to be inversely correlated to G9a expression levels. In clinical HCC specimens, a significant inverse correlation of miR-122 and G9a mRNA expression levels was also observed. Functionally, the colony formation and invasive ability were attenuated in miR-122-overexpressing HCC cells. HCC patients with low miR-122 and high G9a expression levels had the worst OS and DFS rates compared to others. Together, our results confirmed the importance of altered G9a expression during HCC progression and discovered that a novel liver-specific miR-122-G9a regulatory axis exists.

5.
Anal Chem ; 92(2): 1653-1657, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31809016

RESUMO

Paper spray ionization has been used as a fast sampling/ionization method for the direct mass spectrometric analysis of biological samples at ambient conditions. Here, we demonstrated that by utilizing paper spray ionization-mass spectrometry (PSI-MS) coupled with field asymmetric waveform ion mobility spectrometry (FAIMS), predictive metabolic and lipidomic profiles of routine breast core needle biopsies could be obtained effectively. By the combination of machine learning algorithms and pathological examination reports, we developed a classification model, which has an overall accuracy of 87.5% for an instantaneous differentiation between cancerous and noncancerous breast tissues utilizing metabolic and lipidomic profiles. Our results suggested that paper spray ionization-ion mobility spectrometry-mass spectrometry (PSI-IMS-MS) is a powerful approach for rapid breast cancer diagnosis based on altered metabolic and lipidomic profiles.


Assuntos
Neoplasias da Mama/diagnóstico , Aprendizado de Máquina , Papel , Algoritmos , Feminino , Humanos , Espectrometria de Mobilidade Iônica , Espectrometria de Massas por Ionização por Electrospray
6.
Cancers (Basel) ; 11(2)2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759864

RESUMO

Tamoxifen is the most widely used hormone therapy in estrogen receptor-positive (ER+) breast cancer, which accounts for approximately 70% of all breast cancers. Although patients who receive tamoxifen therapy benefit with respect to an improved overall prognosis, resistance and cancer recurrence still occur and remain important clinical challenges. A recent study identified TAR (HIV-1) RNA binding protein 2 (TARBP2) as an oncogene that promotes breast cancer metastasis. In this study, we showed that TARBP2 is overexpressed in hormone therapy-resistant cells and breast cancer tissues, where it enhances tamoxifen resistance. Tamoxifen-induced TARBP2 expression results in the desensitization of ER+ breast cancer cells. Mechanistically, tamoxifen post-transcriptionally stabilizes TARBP2 protein through the downregulation of Merlin, a TARBP2-interacting protein known to enhance its proteasomal degradation. Tamoxifen-induced TARBP2 further stabilizes SOX2 protein to enhance desensitization of breast cancer cells to tamoxifen, while similar to TARBP2, its induction in cancer cells was also observed in metastatic tumor cells. Our results indicate that the TARBP2-SOX2 pathway is upregulated by tamoxifen-mediated Merlin downregulation, which subsequently induces tamoxifen resistance in ER+ breast cancer.

7.
Biochim Biophys Acta Gene Regul Mech ; 1860(10): 1013-1024, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28847731

RESUMO

KH-type splicing regulatory protein (KSRP) is a single-strand RNA binding protein which regulates mRNA stability either by binding to AU-rich elements (AREs) of mRNA 3'UTR or by facilitating miRNA biogenesis to target mRNA. Unlike its well-characterized function at the molecular level in maintaining RNA homeostasis, the role of KSRP in cancer progression remains largely unknown. Here we investigate the role of KSRP in non-small cell lung cancer (NSCLC). We first examined KSRP expression by immunohistochemistry in a cohort containing 196 NSCLC patients and observed a strong positive correlation between KSRP expression and survival of NSCLC patients. Multivariate analysis further identified KSRP as an independent prognostic factor. Manipulating KSRP expression significantly affected in vitro cell mobility and in vivo metastatic ability of NSCLC cells. Microarray analysis identified an ARE-containing gene, EGR3, as a downstream effector of KSRP in NSCLC. Interestingly, we found that KSRP decreased EGR3 mRNA stability in an ARE-independent manner. By screening KSRP-regulated miRNAs in NSCLC cells, we further found that miR-23a directly binds to EGR3 3'UTR, reducing EGR3 expression and thereby inhibiting NSCLC cell mobility. Our findings implicate a targetable KSRP/miR-23a/EGR3 signaling axis in advanced tumor phenotypes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteína 3 de Resposta de Crescimento Precoce/metabolismo , Neoplasias Pulmonares/metabolismo , MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , Estabilidade de RNA , RNA Neoplásico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transativadores/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteína 3 de Resposta de Crescimento Precoce/genética , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/genética , Invasividade Neoplásica , Metástase Neoplásica , Proteínas de Neoplasias/genética , RNA Neoplásico/genética , Proteínas de Ligação a RNA/genética , Transativadores/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-26168176

RESUMO

The objective of this study was to develop a high-frequency imaging platform for evaluating liver fibrosis in mice based on shear-wave elasticity imaging (SWEI). Although SWEI has been used to diagnose hepatic fibrosis clinically, it is performed at relatively low frequencies (<20 MHz). For preclinical ultrasound imaging in small animals, a high-frequency (>30 MHz) single-element transducer with mechanical scanning is often used. In this study we developed a new SWEI system based on a 40-MHz single-element transducer for imaging and a separate 20-MHz excitation transducer for producing the radiation force and the associated shear waves. Liver fibrosis was induced in ten C57BL/6 (B6) mice using carbon tetrachloride; the other ten mice served as the control group. Synchronizing the excitation beam (i.e., the beam from the excitation transducer) and the detection beam sequence (i.e., the beam from the imaging transducer) allows this mechanical-scanning setup to analyze the shear-wave dispersion relation. The liver viscoelastic properties were determined in vivo by measuring the shear-wave dispersion curve followed by fitting to the Voigt model. The mice were then killed and the fibrosis stage was evaluated (from F0 to F4) based on the METAVIR score. The measured mean values of liver elasticity and viscosity, respectively, ranged from 1.06 to 1.89 kPa and from 1.29 to 1.75 Pa∙s for normal F0 and fibrosis stages of F3 and F4. The Spearman coefficients for the correlations between the measured elasticity and viscosity at various fibrosis stages as assessed by the METAVIR score were 0.73 (p < 0.001) and 0.634 (p = 0.0013), respectively. We also found that the collagen content in the liver was linearly correlated with the measured elasticity (r(2) = 0.54, p < 0.001) and less strongly with the viscosity (r2 = 0.26, p = 0.022). Finally, the diagnosis performance of high-frequency SWEI was evaluated using multivariate receiver operating characteristic curve (ROC) analysis. The areas under the multivariate ROC curve for diagnosing fibrosis stages of F ≥ 3, F = 4, F0 vs. F3, F0 vs. F4, and F3 vs. F4 were 0.9, 0.98, 0.83, 1.0, and 0.96, respectively. Compared with traditional ROC analysis, an improved diagnosis performance was found for diagnosing fibrosis stages of F ≥ 3 and F0 vs. F3. These results demonstrate that the developed high-frequency SWEI platform can yield quantitative viscoelastic properties for diagnosing various fibrosis stages in mice. It is a promising tool for studying the progression of liver fibrosis in preclinical animal models both noninvasively and quantitatively.


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Processamento de Imagem Assistida por Computador/métodos , Cirrose Hepática/diagnóstico por imagem , Fígado/diagnóstico por imagem , Animais , Ondas de Choque de Alta Energia , Fígado/patologia , Fígado/fisiopatologia , Cirrose Hepática/patologia , Cirrose Hepática/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL
9.
Diabetes ; 64(10): 3413-24, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25883115

RESUMO

Aberrant Wnt signaling appears to play an important role in the onset of diabetes. Moreover, the insulin signaling pathway is defective in the nucleus tractus solitarii (NTS) of spontaneously hypertensive rats (SHRs) and fructose-fed rats. Nevertheless, the relationships between Wnt signaling and the insulin pathway and the related modulation of blood pressure (BP) in the central nervous system have yet to be established. The aim of this study was to investigate the potential signaling pathways involved in Wnt-mediated BP regulation in the NTS. Pretreatment with the LDL receptor-related protein (LRP) antagonist Dickkopf-1 (DKK1) significantly attenuated the Wnt3a-induced depressor effect and nitric oxide production. Additionally, the inhibition of LRP6 activity using DKK1 significantly abolished Wnt3a-induced glycogen synthase kinase 3ß (GSK-3ß)(S9), extracellular signal-regulated kinases 1/2(T202/Y204), ribosomal protein S6 kinase(T359/S363), and Akt(S473) phosphorylation; and increased insulin receptor substrate 1 (IRS1)(S332) phosphorylation. GSK-3ß was also found to bind directly to IRS1 and to induce the phosphorylation of IRS1 at serine 332 in the NTS. By contrast, administration of the GSK-3ß inhibitor TWS119 into the brain decreased the BP of hypertensive rats by enhancing IRS1 activity. Taken together, these results suggest that the GSK-3ß-IRS1 pathway may play a significant role in Wnt-mediated central BP regulation.


Assuntos
Pressão Sanguínea/fisiologia , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Insulina/fisiologia , Núcleo Solitário/fisiologia , Proteínas Wnt/metabolismo , Animais , Regulação para Baixo , Regulação da Expressão Gênica/fisiologia , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Proteínas Substratos do Receptor de Insulina/genética , Masculino , Óxido Nítrico/metabolismo , Distribuição Aleatória , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Transdução de Sinais , Proteínas Wnt/genética
10.
J Mol Biol ; 426(24): 4049-4060, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25311859

RESUMO

Rad23 was identified as a DNA repair protein, although a role in protein degradation has been described. The protein degradation function of Rad23 contributes to cell cycle progression, stress response, endoplasmic reticulum proteolysis, and DNA repair. Rad23 binds the proteasome through a UbL (ubiquitin-like) domain and contains UBA (ubiquitin-associated) motifs that bind multiubiquitin chains. These domains allow Rad23 to function as a substrate shuttle-factor. This property is shared by structurally similar proteins (Dsk2 and Ddi1) and is conserved among the human and mouse counterparts of Rad23. Despite much effort, the regulation of Rad23 interactions with ubiquitinated substrates and the proteasome is unknown. We report here that Rad23 is extensively phosphorylated in vivo and in vitro. Serine residues in UbL are phosphorylated and influence Rad23 interaction with proteasomes. Replacement of these serine residues with acidic residues, to mimic phosphorylation, reduced proteasome binding. We reported that when UbL is overexpressed, it can compete with Rad23 for proteasome interaction and can inhibit substrate turnover. This effect is not observed with UbL containing acidic substitutions, consistent with results that phosphorylation inhibits interaction with the proteasome. Loss of both Rad23 and Rpn10 caused pleiotropic defects that were suppressed by overexpressing either Rad23 or Rpn10. Rad23 bearing a UbL domain with acidic substitutions failed to suppress rad23Δ rpn10Δ, confirming the importance of regulated Rad23/proteasome binding. Strikingly, threonine 75 in human HR23B also regulates interaction with the proteasome, suggesting that phosphorylation is a conserved mechanism for controlling Rad23/proteasome interaction.


Assuntos
Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Sítios de Ligação/genética , Linhagem Celular Tumoral , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Humanos , Immunoblotting , Camundongos , Mutação , Fosforilação , Complexo de Endopeptidases do Proteassoma/genética , Proteólise , Interferência de RNA , Proteínas de Ligação a RNA , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina/genética , Serina/metabolismo , Especificidade por Substrato , Ubiquitina/metabolismo
11.
Hypertension ; 63(3): 535-41, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24366086

RESUMO

Recent clinical studies found that fructose intake leads to insulin resistance and hypertension. Fructose consumption promotes protein fructosylation and formation of superoxide. In a previous study, we revealed that inhibition of superoxide production in the nucleus tractus solitarii (NTS) reduces blood pressure. Caffeine displays significant antioxidant ability in protecting membranes against oxidative damage and can lower the risk of insulin resistance. However, the mechanism through which caffeine improves fructose-induced insulin resistance is unclear. The aim of this study was to investigate whether caffeine consumption can abolish superoxide generation to enhance insulin signaling in the NTS, thereby reducing blood pressure in rats with fructose-induced hypertension. Treatment with caffeine for 4 weeks decreased blood pressure, serum fasting glucose, insulin, homeostatic model assessment-insulin resistance, and triglyceride levels and increased the serum direct high-density lipoprotein level in fructose-fed rats but not in control rats. Caffeine treatment resulted in the recovery of fructose-induced decrease in nitric oxide production in the NTS. Immunoblotting and immunofluorescence analyses further showed that caffeine reduced the fructose-induced phosphorylation of insulin receptor substrate 1 (IRS1(S307)) and reversed Akt(S473) and neuronal nitric oxide synthase phosphorylation. Similarly, caffeine was able to improve insulin sensitivity and decrease insulin levels in the NTS evoked by fructose. Caffeine intake also reduced the production of superoxide and expression of receptor of advanced glycation end product in the NTS. These results suggest that caffeine may enhance insulin receptor substrate 1-phosphatidylinositol 3-kinase-Akt-neuronal nitric oxide synthase signaling to decrease blood pressure by abolishing superoxide production in the NTS.


Assuntos
Cafeína/uso terapêutico , Hipertensão/tratamento farmacológico , Resistência à Insulina , Núcleo Solitário/fisiopatologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/uso terapêutico , Modelos Animais de Doenças , Frutose/toxicidade , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Insulina/sangue , Masculino , Ratos , Ratos Endogâmicos WKY , Transdução de Sinais/efeitos dos fármacos , Núcleo Solitário/efeitos dos fármacos , Núcleo Solitário/metabolismo
12.
Toxicol Lett ; 205(3): 341-50, 2011 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-21742020

RESUMO

DNA-damaging agents are commonly used as anticancer therapeutics. Unfortunately, such drugs induced DNA damages as well as DNA repair are important in mediating drug resistance to cancer treatments. To evaluate changes in DNA repair proteins that occur in DNA damage agent treatment, we challenged human A549 lung adenocarcinoma cells with cisplatin. hHR23/RAD23, an accessory protein involved in nucleotide-excision repair (NER) at an early lesion-recognition step, was upregulated by cisplatin in a dose- and time-dependent manner. Upregulation of hHR23 expression by low-dose cisplatin was accompanied by an increase in p53, p21, and XPC protein levels. Importantly, knockdown of hHR23B by RNA interference decreased DNA repair activity, cell survival, and induction of p53 and XPC following treatment with cisplatin. Conversely, overexpression of hHR23B enhanced repair activity towards cisplatin-damaged DNA. Inhibition of MEK/ERK and phosphoinositide 3-kinase (PI3K)/AKT signaling pathways attenuated cisplatin-induced hHR23 expression, indicating that these pathways are involved in the process. The increase in hHR23 protein expression mediated by MEK/ERK signaling was due to increased translational efficiency resulting from phosphorylation/activation of the translation-initiating factor eIF-4B. Taken together, these results suggest that cisplatin-induced increases in hHR23 levels are regulated by proliferative signaling pathways and important for DNA repair.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Cisplatino/farmacologia , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Neoplasias/metabolismo , Regulação para Cima/efeitos dos fármacos , Adenocarcinoma/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Enzimas Reparadoras do DNA/antagonistas & inibidores , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Fatores de Iniciação em Eucariotos/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Fosforilação/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Interferência de RNA , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
13.
J Phys Chem B ; 113(35): 11800-7, 2009 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-19678632

RESUMO

A new type of acylated carboxymethyl amphiphilic chitosan (ACC) with the use of acyl chain of varying lengths, from C(2) to C(12), and various degrees of acyl substitution was successfully synthesized and has been characterized in terms of its self-assembly behavior, structural stability, and drug encapsulation. The resulting nanostructure of the ACC nanoaggregates can be well manipulated through a control of hydrophobicity. Structural evolution of the self-assembled nanoaggregates is extensively characterized via (1)H NMR, FTIR, DSC, and TEM. A critical value of the hydrophobic effect, (X(DH) x X(Cn)), i.e., a product of "degree of acyl substitution" and "carbon number of acyl chain", can be employed as an indicator for structural variation of the nanoaggregates: when (X(DH) x X(Cn)) exceeded 1.5, the architecture of the nanoaggregates underwent a structural transformation from solid nanoparticle to hollow nanocapsules. The nanoaggregates exhibited an excellent colloidal and structural stability in aqueous medium. An improved affinity toward drug encapsulation, i.e., doxorubicin, can be technically designed according to the amphiphilic nature of the resulting nanoaggregates for drug delivery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA