Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38082820

RESUMO

Atrial fibrillation (AF) is a common cardiac arrhythmia, and its early detection is crucial for timely treatment. Conventional methods, such as Electrocardiogram (ECG), can be intrusive and require specialized equipment, whereas Photoplethysmography (PPG) offers a non-invasive alternative. In this study, we present a feature fusion approach for AF detection using attention-based Bidirectional Long Short-Term Memory (BiLSTM) and PPG signals. We extract frequency domain (FD) and time domain (TD) features from PPG signals, combine them with deep learning features generated from an attention-based BiLSTM network, and pass the fusion features through a softmax function. Our approach achieves high accuracy (96.5%) and favorable performance metrics (recall 93.20%, precision 94.50%, and F-score 93.09%), improving AF prediction and diagnosis, and providing support for clinicians in their diagnostic processes.


Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/diagnóstico , Doença do Sistema de Condução Cardíaco , Fotopletismografia , Eletrocardiografia
2.
Comput Methods Programs Biomed ; 240: 107677, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37390794

RESUMO

CONCEPTUAL INTRODUCTION: To introduce the concept of cybernetical intelligence, deep learning, development history, international research, algorithms, and the application of these models in smart medical image analysis and deep medicine are reviewed in this paper. This study also defines the terminologies for cybernetical intelligence, deep medicine, and precision medicine. REVIEW OF METHODS: Through literature research and knowledge reorganization, this review explores the fundamental concepts and practical applications of various deep learning techniques and cybernetical intelligence by conducting extensive literature research and reorganizing existing knowledge in medical imaging and deep medicine. The discussion mainly centers on the applications of classical models in this field and addresses the limitations and challenges of these basic models. EVALUATION AND DISCUSSIONS: In this paper, the more comprehensive overview of the classical structural modules in convolutional neural networks is described in detail from the perspective of cybernetical intelligence in deep medicine. The results and data of major research contents of deep learning are consolidated and summarized. CONCLUSION: There are some problems in machine learning internationally, such as insufficient research techniques, unsystematic research methods, incomplete research depth, and incomplete evaluation research. Some suggestions are given in our review to solve the problems existing in the deep learning models. Cybernetical intelligence has proven to be a valuable and promising avenue for advancing various fields, including deep medicine and personalized medicine.


Assuntos
Algoritmos , Redes Neurais de Computação , Aprendizado de Máquina , Diagnóstico por Imagem/métodos , Inteligência
3.
Talanta ; 262: 124685, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37220690

RESUMO

Digital bio-detection has become one of the most appealing methods in recent years due to its excellent performance with ultra-sensitivity in detection of low-abundance targets. Traditional digital bio-detection needs the utilization of micro-chambers for physical isolation of targets, while the recently developed beads-based micro-chamber free one is attracting extensive attention, although there exist the disadvantages of overlaps between positive ("1") and negative ("0") signals as well as the decreased detection sensitivity in multiplexed mode. Here we propose a feasible and robust micro-chamber free digital bio-detection for multiplexed and ultrasensitive immunoassay based on encoded magnetic microbeads (EMMs) and tyramide signal amplification (TSA) strategy. An EMMs-based multiplexed platform is constructed by using a fluorescent encoding method, then a puissant signal amplification of positive events in TSA procedure is achieved via systematical revelation of key factors influences. For proof of concept, a three-plexed tumor markers detection is performed to evaluate our established platform. The detection sensitivity is comparable to the corresponding single-plexed assays and is also approximately 30-15,000 times improvement compared to the conventional suspension chip. Therefore, this multiplexed micro-chamber free digital bio-detection paves a promising way to be an ultrasensitive and powerful tool for clinical diagnosis.


Assuntos
Biomarcadores Tumorais , Pontos Quânticos , Microesferas , Imunoensaio/métodos , Fenômenos Magnéticos
4.
Front Neurol ; 14: 1151421, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025199

RESUMO

The efficacy of acupuncture and moxibustion in the treatment of depression has been fully recognized internationally. However, its central mechanism is still not developed into a unified standard, and it is generally believed that the central mechanism is regulation of the cortical striatum thalamic neural pathway of the limbic system. In recent years, some scholars have applied functional magnetic resonance imaging (fMRI) to study the central mechanism and the associated brain effects of acupuncture and moxibustion treatment for depression. This study reviews the acupuncture and moxibustion treatment of depression from two aspects: (1) fMRI study of the brain function related to the acupuncture treatment of depression: different acupuncture and moxibustion methods are summarized, the fMRI technique is elaborately explained, and the results of fMRI study of the effects of acupuncture are analyzed in detail, and (2) fMRI associated "brain functional network" effects of acupuncture and moxibustion on depression, including the effects on the hippocampus, the amygdala, the cingulate gyrus, the frontal lobe, the temporal lobe, and other brain regions. The study of the effects of acupuncture on brain imaging is not adequately developed and still needs further improvement and development. The brain function networks associated with the acupuncture treatment of depression have not yet been adequately developed to provide a scientific and standardized mechanism of the effects of acupuncture. For this purpose, this study analyzes in-depth the clinical studies on the treatment of anxiety and depression by acupuncture and moxibustion, by depicting how the employment of fMRI technology provides significant imaging changes in the brain regions. Therefore, the study also provides a reference for future clinical research on the treatment of anxiety and depression.

5.
Microbiol Spectr ; 10(5): e0139622, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36190425

RESUMO

Gut microbes can affect host adaptation to various environment conditions. Escherichia coli is a common gut species, including pathogenic strains and nonpathogenic strains. This study was conducted to investigate the effects of different E. coli strains in the gut on the health of pigs. In this study, the complete genomes of two E. coli strains isolated from pigs were sequenced. The whole genomes of Y18J and the enterotoxigenic E. coli strain W25K were compared to determine their roles in pig adaptation to disease. Y18J was isolated from feces of healthy piglets and showed strong antimicrobial activity against W25K in vitro. Gene knockout experiments and complementation analysis followed by modeling the microbe-microbe interactions demonstrated that the antagonistic mechanism of Y18J against W25K relied on the bacteriocins colicin B and colicin M. Compared to W25K, Y18J is devoid of exotoxin-coding genes and has more secondary-metabolite-biosynthetic gene clusters. W25K carries more genes involved in genome replication, in accordance with a shorter cell cycle observed during a growth experiment. The analysis of gut metagenomes in different pig breeds showed that colicins B and M were enriched in Laiwu pigs, a Chinese local breed, but were scarce in boars and Duroc pigs. IMPORTANCE This study revealed the heterogeneity of E. coli strains from pigs, including two strains studied by both in silico and wet experiments in detail and 14 strains studied by bioinformatics analysis. E. coli Y18J may improve the adaptability of pigs toward disease resistance through the production of colicins B and M. Our findings could shed light on the pathogenic and harmless roles of E. coli in modern animal husbandry, leading to a better understanding of intestinal-microbe-pathogen interactions in the course of evolution.


Assuntos
Anti-Infecciosos , Bacteriocinas , Colicinas , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Animais , Suínos , Masculino , Colicinas/genética , Colicinas/metabolismo , Escherichia coli Enterotoxigênica/genética , Escherichia coli Enterotoxigênica/metabolismo , Infecções por Escherichia coli/veterinária , Diarreia/veterinária , Bacteriocinas/genética , Exotoxinas
6.
Microbiome ; 10(1): 83, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650642

RESUMO

BACKGROUND: In modern animal husbandry, breeders pay increasing attention to improving sow nutrition during pregnancy and lactation to favor the health of neonates. Sow milk is a main food source for piglets during their first three weeks of life, which is not only a rich repository of essential nutrients and a broad range of bioactive compounds, but also an indispensable source of commensal bacteria. Maternal milk microorganisms are important sources of commensal bacteria for the neonatal gut. Bacteria from maternal milk may confer a health benefit on the host. METHODS: Sow milk bacteria were isolated using culturomics followed by identification using 16S rRNA gene sequencing. To screen isolates for potential probiotic activity, the functional evaluation was conducted to assess their antagonistic activity against pathogens in vitro and evaluate their resistance against oxidative stress in damaged Drosophila induced by paraquat. In a piglet feeding trial, a total of 54 newborn suckling piglets were chosen from nine sows and randomly assigned to three treatments with different concentrations of a candidate strain. Multiple approaches were carried out to verify its antioxidant function including western blotting, enzyme activity analysis, metabolomics and 16S rRNA gene amplicon sequencing. RESULTS: The 1240 isolates were screened out from the sow milk microbiota and grouped into 271 bacterial taxa based on a nonredundant set of 16S rRNA gene sequencing. Among 80 Pediococcus isolates, a new Pediococcus pentosaceus strain (SMM914) showed the best performance in inhibition ability against swine pathogens and in a Drosophila model challenged by paraquat. Pretreatment of piglets with SMM914 induced the Nrf2-Keap1 antioxidant signaling pathway and greatly affected the pathways of amino acid metabolism and lipid metabolism in plasma. In the colon, the relative abundance of Lactobacillus was significantly increased in the high dose SMM914 group compared with the control group. CONCLUSION: P. pentosaceus SMM914 is a promising probiotic conferring antioxidant capacity by activating the Nrf2-Keap1 antioxidant signaling pathway in piglets. Our study provided useful resources for better understanding the relationships between the maternal microbiota and offspring. Video Abstract.


Assuntos
Antioxidantes , Leite , Animais , Antioxidantes/análise , Antioxidantes/metabolismo , Bactérias , Drosophila/genética , Drosophila/metabolismo , Feminino , Proteína 1 Associada a ECH Semelhante a Kelch/análise , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Paraquat/análise , Paraquat/metabolismo , Pediococcus pentosaceus/genética , Pediococcus pentosaceus/metabolismo , Gravidez , RNA Ribossômico 16S/análise , Suínos
7.
Vet Res ; 53(1): 39, 2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35659762

RESUMO

Lawsonia intracellularis is the causative agent of proliferative enteropathy. While it harbors genes encoding the entire apparatus required for the type III secretion system (T3SS) and the expression of some of these components has been detected during experimental infection, the identification of L. intracellularis T3SS substrates (effector proteins) has been hampered. The Yersinia T3SS and yeast growth inhibition assays are two important heterologous systems used for the characterization of effector proteins. Bacterial EPIYA effectors are a distinct class of bacterial effectors defined by the presence of EPIYA or the EPIYA-related motif. When delivered into host cells via a T3SS or type IV secretion system, these effectors undergo tyrosine phosphorylation of the EPIYA motif, which enables them to manipulate host cell signaling by promiscuously interacting with multiple SH2 domain-containing proteins. A previous study showed that L. intracellularis LI0666 contains two EPIYA motifs and speculated that this protein could be a T3SS effector. In this study, we show that LI0666 is secreted by Yersinia in a T3SS-dependent manner and inhibits yeast growth. LI0666 is phosphorylated at tyrosine residues in porcine intestinal epithelial cells and in human epithelial cells. Like the archetypal EPIYA effector CagA, the EPIYA-containing region is not required for LI0666 association with yeast and mammalian cell membranes. Our results indicate that LI0666 is an authentic bacterial EPIYA effector. Identification of the tyrosine kinases that are responsible for LI0666 phosphorylation and the SH2 domain-containing host proteins that LI0666 interacts with will help to explore the molecular mechanisms of LI0666 in disease development.


Assuntos
Lawsonia (Bactéria) , Yersinia enterocolitica , Motivos de Aminoácidos , Animais , Bactérias , Proteínas de Bactérias/metabolismo , Mamíferos , Saccharomyces cerevisiae , Suínos , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Tirosina/metabolismo , Yersinia enterocolitica/genética , Yersinia enterocolitica/metabolismo
8.
Microorganisms ; 10(5)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35630514

RESUMO

Endophytes represent a ubiquitous and magical world in plants. Almost all plant species studied by different researchers have been found to harbor one or more endophytes, which protect host plants from pathogen invasion and from adverse environmental conditions. They produce various metabolites that can directly inhibit the growth of pathogens and even promote the growth and development of the host plants. In this review, we focus on the biological control of plant diseases, aiming to elucidate the contribution and key roles of endophytes and their metabolites in this field with the latest research information. Metabolites synthesized by endophytes are part of plant disease management, and the application of endophyte metabolites to induce plant resistance is very promising. Furthermore, multi-omics should be more fully utilized in plant-microbe research, especially in mining novel bioactive metabolites. We believe that the utilization of endophytes and their metabolites for plant disease management is a meaningful and promising research direction that can lead to new breakthroughs in the development of more effective and ecosystem-friendly insecticides and fungicides in modern agriculture.

9.
Front Microbiol ; 12: 753195, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34880838

RESUMO

Trace minerals are extremely important for balanced nutrition, growth, and development in animals and humans. Phytic acid chelation promotes the use of probiotics in nutrition. The phytic acid-degrading strain Lactococcus lactis psm16 was obtained from swine milk by enrichment culture and direct plate methods. In this study, we evaluated the effect of the strain psm16 on mineral element content in a mouse model. Mice were divided into four groups: basal diet, 1% phytic acid, 1% phytic acid + psm16, 1% phytic acid + 500 U/kg commercial phytase. Concentrations of acetic acid, propionic acid, butyric acid, and total short-chain fatty acids were significantly increased in the strain psm16 group compared to the phytic acid group. The concentrations of copper (p = 0.021) and zinc (p = 0.017) in liver, calcium (p = 0.000), manganese (p = 0.000), and zinc (p = 0.000) in plasma and manganese (p = 0.010) and zinc (p = 0.022) in kidney were significantly increased in psm16 group, while copper (p = 0.007) and magnesium (p = 0.001) were significantly reduced. In conclusion, the addition of phytic acid-degrading bacteria psm16 into a diet including phytic acid can affect the content of trace elements in the liver, kidney, and plasma of mice, counteracting the harmful effects of phytic acid.

10.
Diabetes ; 70(6): 1303-1316, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34162682

RESUMO

Adiponectin is an adipokine that exerts insulin-sensitizing and anti-inflammatory roles in insulin target tissues including liver. While the insulin-sensitizing function of adiponectin has been extensively investigated, the precise mechanism by which adiponectin alleviates diet-induced hepatic inflammation remains elusive. Here, we report that hepatocyte-specific knockout (KO) of the adaptor protein APPL2 enhanced adiponectin sensitivity and prevented mice from developing high-fat diet-induced inflammation, insulin resistance, and glucose intolerance, although it caused fatty liver. The improved anti-inflammatory and insulin-sensitizing effects in the APPL2 hepatocyte-specific KO mice were largely reversed by knocking out adiponectin. Mechanistically, hepatocyte APPL2 deficiency enhances adiponectin signaling in the liver, which blocks TNF-α-stimulated MCP-1 expression via inhibiting the mTORC1 signaling pathway, leading to reduced macrophage infiltration and thus reduced inflammation in the liver. With results taken together, our study uncovers a mechanism underlying the anti-inflammatory role of adiponectin in the liver and reveals the hepatic APPL2-mTORC1-MCP-1 axis as a potential target for treating overnutrition-induced inflammation in the liver.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Adiponectina/fisiologia , Hepatite/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Movimento Celular/genética , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Regulação para Baixo/genética , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Hepatite/imunologia , Hepatite/metabolismo , Hepatite/patologia , Hepatócitos/metabolismo , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Resistência à Insulina/genética , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Knockout
11.
Chem Commun (Camb) ; 57(37): 4548-4551, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33956007

RESUMO

Here we report a facile dye incorporation method for fluorescence encoded microbeads, which is achieved by tuning the mixed polymer type (blank and dye-labeled polymers) and their doping ratio through electrostatic loading into mesoporous beads. This method is universal to various carriers and could render large encoding capacities.


Assuntos
Corantes Fluorescentes/química , Microesferas , Polímeros/química , Microscopia de Fluorescência , Tamanho da Partícula , Porosidade , Eletricidade Estática , Propriedades de Superfície
12.
Small ; 17(19): e2100315, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33817970

RESUMO

With the rapid development of suspension array technology, microbeads-based barcodes as the core element with sufficient encoding capacity are urgently required for high-throughput multiplexed detection. Here, a novel structure-fluorescence combinational encoding strategy is proposed for the first time to establish a barcode library with ultrahigh encoding capacities. Based on the never revealed transformability of the structural parameters (e.g., porosity and matrix component) of mesoporous microbeads into scattering signals in flow cytometry, the enlargement of codes number has been successfully realized in combination with two other fluorescent elements of fluorescein isothiocyanate isomer I (FITC) and quantum dots (QDs). The barcodes are constructed with precise architectures including FITC encapsulated within mesopores and magnetic nanoparticles as well as QDs immobilized on the outer surface to achieve the ultrahigh encoding level of 300 accompanied with superparamagnetism. To the best of knowledge, it is the highest record of single excitation laser-based encoding capacity up to now. Moreover, a ten-plexed tumor markers bioassay based on the tailored-designed barcodes has been evaluated to confirm their feasibility and effectiveness, and the results indicate that the barcodes platform is a promising and robust tool for practical multiplexed biodetection.


Assuntos
Nanopartículas , Pontos Quânticos , Processamento Eletrônico de Dados , Citometria de Fluxo , Microesferas
13.
Acta Biomater ; 124: 336-347, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33578055

RESUMO

Extracellular vesicles (EVs) are membrane-encapsulated particles with critical biomedical functions, including mediating intercellular communication, assisting tumor metastasis, and carrying protein and microRNA biomarkers. The downstream applications of EVs are greatly influenced by the quality of the isolated EVs. However, almost none of the separation methods can simultaneously achieve both high yield and high purity of the isolated EVs, thus making the isolation of EVs an essential challenge in EV research. Here, we developed a magnetic bead-mediated selective adsorption strategy (MagExo) for easy-to-operate EV isolation. Benefited from the presence of an adsorption window between EVs and proteins under the effect of a hydrophilic polymer, EVs tend to adsorb on the surface of magnetic beads selectively and can be separated from biological fluids with high purity by simple magnetic separation. The proposed method was used for EV isolation from plasma and cell culture media (CCM), with two times higher yield and comparable purity of the harvested EVs to that obtained by ultracentrifugation (UC). Downstream applications in proteomics analysis showed 86.6% (plasma) and 86.5% (CCM) of the analyzed proteins were matched with the ExoCarta database, which indicates MagExo indeed enriches EVs efficiently. Furthermore, we found the target RNA amount of the isolated EVs by MagExo were almost dozens and hundred times higher than the gold standard DG-UC and ultracentrifugation (UC) methods, respectively. All the results show that MagExo is a reliable, easy, and efficient approach to harvest EVs for a wide variety of downstream applications with minimized sample usage. STATEMENT OF SIGNIFICANCE: Extracellular vesicles (EVs) are presently attracting increasing interest among clinical and scientific researchers. Although the downstream applications of EVs are recognized to be greatly affected by the quality of the isolated EVs, almost none of the separation methods can simultaneously achieve high yield and high purity of the isolated EVs; this makes the isolation of EVs an essential challenge in EV research. In the present work, we proposed a simple and easy-to-operate method (MagExo) for the separation and purification of EVs based on the phenomenon that EVs can be selectively adsorbed on the surface of magnetic microspheres in the presence of a hydrophilic polymer. The performance of MagExo was comparable to or even better than that of gold standard methods and commercial kits, with two times higher yield and comparable purity of the harvested EVs to that achieved with ultracentrifugation (UC); this could meet the requirements of various EV-associated downstream applications. In addition, MagExo can be easily automated by commercial liquid workstations, thus significantly improving the isolation throughput and paving a new way in clinical diagnosis and treatment.


Assuntos
Vesículas Extracelulares , MicroRNAs , Adsorção , Fenômenos Magnéticos , Ultracentrifugação
14.
Front Microbiol ; 12: 761189, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35265047

RESUMO

Weaning of piglets could increase the risk of infecting with Gram-negative pathogens, which can further bring about a wide array of virulence factors including the endotoxin lipopolysaccharide (LPS). It is in common practice that the use of antibiotics has been restricted in animal husbandry. Alkaline phosphatase (AKP) plays an important role in the detoxification and anti-inflammatory effects of LPS. This study investigated the protective effects of AKP on intestinal epithelial cells during inflammation. Site-directed mutagenesis was performed to modulate the AKP activity. The enzyme activity tests showed that the activity of the DelSigD153G-D330N mutants in B. subtilis was nearly 1,600 times higher than that of the wild-type AKP. In this study, an in vitro LPS-induced inflammation model using IPEC-J2 cells was established. The mRNA expression of interleukin-(IL-) 6, IL-8, and tumor necrosis factor-α (TNF-α) were extremely significantly downregulated, and that of ASC amino acid transporter 2 (ASCT-2), zonula occludens protein-1 (ZO-1), and occludin-3 (CLDN-3) were significantly upregulated by the DelSigD153G-D330N mutant compared with LPS treatment. This concludes the anti-inflammatory role of AKP on epithelial membrane, and we are hopeful that this research could achieve a sustainable development for the pig industry.

15.
Small ; 16(17): e1907521, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32174029

RESUMO

The development of a powerful immunoassay platform with capacities of both simplicity and high multiplexing is promising for disease diagnosis. To meet this urgent need, for the first time, a multiplexed luminescent oxygen channeling immunoassay (multi-LOCI) platform by implementation of LOCI with suspension array technology is reported. As the microcarrier of the platform, a unique dual-functional barcode with a host-guest structure composed of a quantum dot host bead (QDH) and LOCI acceptor beads (ABs) is designed, in which QDH provides function of high coding capacity while ABs facilitate the LOCI function. The analytes bridge QDH@ABs and LOCI donor beads (DBs) into a close proximity, forming a QDH@ABs-DBs "host-guest-satellite" superstructure that generates both barcode signal from QDH and LOCI signal induced by singlet oxygen channeling between ABs and DBs. Through imaging-based decoding, different barcodes are automatically distinguished and colocalized with LOCI signals. Importantly, the assay achieves simultaneous detection of multiple analytes within one reaction, simply by following a "mix-and-measure" protocol without the need for tedious washing steps. Furthermore, the multi-LOCI platform is validated for real sample measurements. With the advantages of robustness, simplicity, and high multiplexing, the platform holds great potential for the development of point-of-care diagnostics.


Assuntos
Imunoensaio , Luminescência , Oxigênio , Imunoensaio/instrumentação , Imunoensaio/métodos , Oxigênio/metabolismo , Pontos Quânticos/química , Oxigênio Singlete/química
16.
Aging Cell ; 19(3): e13110, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32012439

RESUMO

Mammalian aging is associated with reduced tissue regeneration and loss of physiological integrity. With age, stem cells diminish in their ability to regenerate adult tissues, likely contributing to age-related morbidity. Thus, we replaced aged hematopoietic stem cells (HSCs) with young-donor HSCs using a novel mobilization-enabled hematopoietic stem cell transplantation (HSCT) technology as an alternative to the highly toxic conditioning regimens used in conventional HSCT. Using this approach, we are the first to report an increase in median lifespan (12%) and a decrease in overall mortality hazard (HR: 0.42, CI: 0.273-0.638) in aged mice following transplantation of young-donor HSCs. The increase in longevity was accompanied by reductions of frailty measures and increases in food intake and body weight of aged recipients. Young-donor HSCs not only preserved youthful function within the aged bone marrow stroma, but also at least partially ameliorated dysfunctional hematopoietic phenotypes of aged recipients. This compelling evidence that mammalian health and lifespan can be extended through stem cell therapy adds a new category to the very limited list of successful anti-aging/life-extending interventions. Our findings have implications for further development of stem cell therapies for increasing health and lifespan.


Assuntos
Senescência Celular , Fragilidade/terapia , Transplante de Células-Tronco Hematopoéticas/métodos , Longevidade , Doadores de Tecidos , Transplantados , Fatores Etários , Animais , Peso Corporal , Medula Óssea/fisiologia , Ingestão de Alimentos , Feminino , Fragilidade/sangue , Genótipo , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo
17.
Mol Ther Methods Clin Dev ; 17: 83-98, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31890743

RESUMO

Glial cell-line-derived neurotrophic factor (GDNF) is a potent neuroprotective agent in cellular and animal models of Parkinson's disease (PD). However, CNS delivery of GDNF in clinical trials has proven challenging due to blood-brain barrier (BBB) impermeability, poor diffusion within brain tissue, and large brain size. We report that using non-toxic mobilization-enabled preconditioning, hematopoietic stem cell (HSC) transplantation-based macrophage-mediated gene delivery may provide a solution to overcome these obstacles. Syngeneic bone marrow HSCs were transduced ex vivo with a lentiviral vector expressing macrophage promoter-driven GDNF and transplanted into 14-week-old MitoPark mice exhibiting PD-like impairments. Transplant preconditioning with granulocyte colony-stimulating factor (G-CSF) and AMD3100 was used to vacate bone marrow stem cell niches. Chimerism reached ∼80% after seven transplantation cycles. Transgene-expressing macrophages infiltrated degenerating CNS regions of MitoPark mice (not wild-type littermate controls), resulting in increased GDNF levels in the midbrain. Macrophage GDNF delivery not only markedly improved motor and non-motor dysfunction, but also dramatically mitigated the loss of dopaminergic neurons in both substantia nigra and the ventral tegmental area and preserved axonal terminals in the striatum. Striatal dopamine levels were almost completely restored. Our data support further development of mobilization-enabled HSC transplantation (HSCT)-based macrophage-mediated GDNF gene delivery as a disease-modifying therapy for PD.

18.
Nanoscale ; 11(29): 14050-14059, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31313795

RESUMO

Ultrabright fluorescent particles (UFPs) have attracted increasing attention because of their outstanding signal amplification functions. However, there is still an urgent demand for designing novel UFPs with new components or structures as the existing ones can not satisfy the practical requirements due to their inherent disadvantages. Here we propose a novel ultrabright fluorescent particle platform by doping dyes of 5-aminofluorescein (5-AF) into silica core-based spherical poly (acrylic acid) brushes (SiO2@PAA@5-AF) and discuss their fundamental structure-fluorescence tuning principles. A series of brushes with different polymer chain lengths are successfully synthesized and then loaded with 5-AF through chemical binding. The high loading amount, suitable density or distribution, and enhanced quantum yield (QY) of 5-AF due to the amide bond formation with PAA chains on brushes are concluded as the three major reasons for the ultrabrightness of SiO2@PAA@5-AF. Therefore, a 2350 ± 445 times brighter brush particle in comparison to a single quantum dot (QD) is realized, and a 2.1 ± 0.4 times fluorescence improvement of a brush vs. a QD normalized by volume is also achieved when taking the hydrodynamic diameter into consideration (∼300 nm vs. ∼30 nm). Moreover, the excellent tolerance stabilities in normally applied environments and outstanding label effects to form 4-plexed encoded beads are demonstrated as well. The results in this work strongly indicate a promising potential of SiO2@PAA@5-AF as an ultrabright and stable signal amplification tool for biomedical related sensing, labeling, and biodetection.

19.
Methods Mol Biol ; 1919: 205-213, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30656632

RESUMO

Lentiviral vectors are increasingly used as efficient gene transfer tools in the experimental and clinical gene therapy treatment of acquired and inherited genetic diseases. Hematopoietic stem cells (HSCs) are characterized by the capacity for self-renewal, as well as multi-lineage differentiation and maintenance of the lymphohematopoietic system throughout life. As such, HSC transplantation (HSCT) has proven to be a powerful therapeutic modality for the treatment of both malignant and nonmalignant disorders. Transduction of lentiviral vectors into HSCs may offer long-term stable expression of a therapeutic gene in both preclinical and clinical settings. The purpose of this chapter is to describe an optimized procedure for lentiviral transduction of mouse HSCs followed by HSCT.


Assuntos
Células da Medula Óssea/metabolismo , Vetores Genéticos/genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Lentivirus/genética , Transdução Genética , Animais , Células da Medula Óssea/citologia , Técnicas de Cultura de Células , Células HEK293 , Células-Tronco Hematopoéticas/citologia , Humanos , Camundongos
20.
Mov Disord ; 33(12): 1928-1937, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30440089

RESUMO

BACKGROUND: Parkinson's disease is characterized by the progressive loss of dopamine neurons in the substantia nigra, leading to severe motor deficits. Although the disease likely begins to develop years before observable motor symptoms, the specific morphological and functional alterations involved are poorly understood. OBJECTIVES: MitoPark mice lack the gene coding for mitochondrial transcription factor A specifically in dopamine neurons, which over time produces a progressive decline of neuronal function and related behavior that phenotypically mirrors human parkinsonism. Our previous work identified a progressive decrease in cell capacitance in dopamine neurons from MitoPark mice, possibly suggesting reduced membrane surface area. We therefore sought to identify and quantify somatodendritic parameters in this model across age. METHODS: We used whole-cell patch clamp and fluorescent labeling to quantify somatodendritic morphology of single, neurobiotin-filled dopamine neurons in acutely isolated brain slices from MitoPark mice. RESULTS: We found that MitoPark mice exhibit an adult-onset, age-dependent reduction of neuritic branching and soma size in dopamine neurons. This decline proceeds similarly in MitoPark mice of both sexes, but does not begin until after the age that early decrements in ion channel physiology and behavior have previously been observed. CONCLUSIONS: A progressive and severe decline in somatodendritic morphology occurs prior to cell death, but is not responsible for the subtle decrements observable in the earliest stages of neurodegeneration. This work could help identify the ideal time window for specific treatments to halt disease progression and avert debilitating motor deficits in Parkinson's patients. © 2018 International Parkinson and Movement Disorder Society.


Assuntos
Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Atividade Motora/fisiologia , Doença de Parkinson/fisiopatologia , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/patologia , Camundongos Transgênicos , Doença de Parkinson/patologia , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Substância Negra/metabolismo , Substância Negra/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA