Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Signal ; 108: 110696, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37409402

RESUMO

Apolipoprotein E (APOE) was recognized as a key regulator of lipid metabolism, which prompted the Apoe-knockout (Apoe-/-) mouse to be the most widely used atherosclerotic model. However, with more and more important physiological roles of APOE being revealed, it is necessary to reacquaint its comprehensive function in the aorta. In this study, we aimed to reveal how Apoe-knockout impacts the gene pathways and phenotypes in the aorta of mice. We performed transcriptome sequencing to acquire the gene expression profile (GEP) for C57BL/6J and Apoe-/- mouse aorta, and used enrichment analysis to reveal the signal pathways enriched for differentially expressed genes (DEGs). In addition, we used immunofluorescence and ELISA to detect the phenotypic differences of vascular tissues and plasma in the two-group mice. Apoe-knockout resulted in significant changes in the expression of 538 genes, among which about 75% were up-regulated and 134 genes were altered more than twice. In addition to the lipid metabolism pathways, DEGs were also mainly enriched in the pathways implicated in endothelial cell proliferation, migration of epithelial cells, immune regulatory, and redox. GSEA shows that the up-regulated genes are mainly enriched in 'immune regulation pathways' and 'signal regulation' pathways, while the down-regulated genes are enriched in lipid metabolism pathways, 'regulation_of_nitric_oxide_synthase_activity' and the pathways involved in redox homeostasis, including 'monooxygenase regulation', 'peroxisomes' and 'oxygen binding'. A significant increase of reactive oxygen species and a remarkable reduction of GSH/GSSG ratio were respectively observed in the vascular tissues and plasma of Apoe-/- mice. In addition, endothelin-1 significantly increased in the vascular tissue and the plasma of Apoe-/- mice. Taken together, our results suggest that besides functioning in lipid metabolism, APOE may be an important signal regulator that mediates the expression of the genes related to the pathways involved in redox, inflammation, and endothelial function. Apoe-knockout-induced strong vascular oxidative stress is also the key factor contributing to atherosclerosis.


Assuntos
Aterosclerose , Transcriptoma , Camundongos , Animais , Transcriptoma/genética , Camundongos Knockout , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Inflamação/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Oxirredução , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-36103099

RESUMO

PURPOSE: Inflammation associated endothelial cell (EC) dysfunction is key to atherosclerotic disease. Recent studies have demonstrated a protective role of amitriptyline in cardiomyocytes induced by hypoxia/reoxygenation. However, the mechanism by which amitriptyline regulates the inflammatory reaction in ECs remains unknown. Thus, the aim of this study was to investigate whether amitriptyline protects against inflammation in TNF-α-treated ECs. METHODS: HUVECs were incubated with amitriptyline (2.5 µM) or TNF-α (20 ng/ml) for 24 h. EdU, tube formation, transwell, DHE fluorescence staining, and monocyte adhesion assays were performed to investigate endothelial function. Thoracic aortas were isolated from mice, and vascular tone was measured with a wire myograph system. The levels of ICAM-1, VCAM-1, MCP-1, phosphorylated MAPK and NF-κB were detected using western blotting. RESULTS: Amitriptyline increased the phosphorylation of nitric oxide synthase (eNOS) and the release of NO. Amitriptyline significantly inhibited TNF-α-induced increases in ASMase activity and the release of ceramide and downregulated TNF-α-induced expression of proinflammatory proteins, including ICAM-1, VCAM-1, and MCP-1 in ECs, as well as the secretion of sICAM-1 and sVCAM-1. TNF-α treatment obviously increased monocyte adhesion and ROS production and impaired HUVEC proliferation, migration and tube formation, while amitriptyline rescued proliferation, migration, and tube formation and decreased monocyte adhesion and ROS production. Additionally, we demonstrated that amitriptyline suppressed TNF-α-induced MAPK phosphorylation as well as the activity of NF-κB in HUVECs. The results showed that the relaxation response of aortic rings to acetylcholine in the WT-TNF-α group was much lower than that in the WT group, and the sensitivity of aortic rings to acetylcholine in the WT-TNF-α group and WT-AMI-TNF-α group was significantly higher than that in the WT-TNF-α group. CONCLUSION: These results suggest that amitriptyline reduces endothelial inflammation, consequently improving vascular endothelial function. Thus, the identification of amitriptyline as a potential strategy to improve endothelial function is important for preventing vascular diseases.

3.
Front Cardiovasc Med ; 8: 775392, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047575

RESUMO

Both resveratrol and myocyte enhancer factor 2A (MEF2A) may protect vascular endothelial cell (VEC) through activating the expression of SIRT1. However, the relationship between resveratrol and MEF2A is unclear. We aimed to investigate the deeper mechanism of resveratrol in protecting vascular endothelial cells and whether MEF2A plays a key role in the protective function of resveratrol. Human umbilical vein endothelial cell (HUVEC) was used for in vitro study, and small interfere RNA was used for silencing MEF2A. Silencing MEF2A in the vascular endothelium (VE) of ApoE-/- mice was performed by tail injection with adeno associated virus expressing si-mef2a-shRNA. The results showed that treatment of HUVEC with resveratrol significantly up-regulated MEF2A, and prevented H2O2-induced but not siRNA-induced down-regulation of MEF2A. Under various experimental conditions, the expression of SIRT1 changed with the level of MEF2A. Resveratrol could rescue from cell apoptosis, reduction of cell proliferation and viability induced by H2O2, but could not prevent against that caused by silencing MEF2A with siRNA. Silencing MEF2A in VE of apoE-/- mice decreased the expression of SIRT1, increased the plasma LDL-c, and abrogated the function of resveratrol on reducing triglyceride. Impaired integrity of VE and aggravated atherosclerotic lesion were observed in MEF2A silenced mice through immunofluorescence and oil red O staining, respectively. In conclusion, resveratrol enhances MEF2A expression, and the upregulation of MEF2A is required for the endothelial protective benefits of resveratrol in vitro via activating SIRT1. Our work has also explored the in vivo relevance of this signaling pathway in experimental models of atherosclerosis and lipid dysregulation, setting the stage for more comprehensive phenotyping in vivo and further defining the molecular mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA