Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
Materials (Basel) ; 17(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38793330

RESUMO

In this paper, four water-binder ratios (w/b) of 0.29, 0.33, 0.39, and 0.46 were designed. A variable test temperature was implemented in the drying-wetting cycle test according to the temperature fluctuations in the actual service environment, and the constant temperature test was established as the control group. The mechanical properties and chloride corrosion resistance of concrete with different w/b ratios under variable temperature drying-wetting cycles, as well as the microstructure changes, phase composition, and damage mechanism inside the concrete, were investigated. The results showed that the mechanical properties of concrete increased first and then decreased with drying-wetting cycles increasing, whereas the chloride corrosion resistance continued to decline. A higher w/b exacerbated the deterioration of the concrete performance. A higher w/b increased the porosity, chloride diffusion depth, and chloride content, thus reducing the resistance of chloride corrosion. Compared with w/b = 0.29, the compressive strength, splitting tensile strength, mass, and relative dynamic elasticity modulus of w/b = 0.46 exposed to 60 drying-wetting cycles decreased by 54.50%, 52.44%, 0.96%, and 6.50%, respectively, while the porosity, peak chloride content, and erosion depth increased by 45.12%, 70.45%, and 45.00%. Compared with the drying-wetting cycle with a constant temperature, the cumulative damage caused by the drying-wetting cycle with a variable temperature was greater, resulting in more severe deterioration of concrete performance. The increase in the test temperature significantly accelerated the diffusion rate, penetration depth, and chemical binding capacity of chloride ions. After 60 drying-wetting cycles, the peak chlorine content and erosion depth of w/b = 0.46 under variable temperature cycles were 15.38% and 10.32% higher than those under a constant temperature, while the compressive strength, splitting tensile strength, mass, and relative dynamic elastic modulus were reduced by 7.76%, 14.81%, 0.33%, and 2.40%, respectively. Microscopic analysis confirmed that higher w/b and variable temperature cycles accelerated the decay of mechanical properties and the decline of chloride corrosion resistance. According to the numerical fitting analysis, the w/b should be 0.29~0.39 under the condition that the mechanical properties and chloride corrosion resistance of concrete are met.

2.
Materials (Basel) ; 17(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38730751

RESUMO

Geopolymer concrete (GPC) represents an innovative green and low-carbon construction material, offering a viable alternative to ordinary Portland cement concrete (OPC) in building applications. However, existing studies tend to overlook the recyclability aspect of GPC for future use. Various structural applications necessitate the use of concrete with distinct strength characteristics. The recyclability of the parent concrete is influenced by these varying strengths. This study examined the recycling potential of GPC across a spectrum of strength grades (40, 60, 80, and 100 MPa, marked as C40, C60, C80, and C100) when subjected to freeze-thaw conditions. Recycling 5-16 mm recycled geopolymer coarse aggregate (RGAs) from GPC prepared from 5 to 16 mm natural coarse aggregates (NAs). The cementitious material comprised 60% metakaolin and 40% slag, with natural gravel serving as the NAs, and the alkali activator consisting of sodium hydroxide solution and sodium silicate solution. The strength of the GPC was modulated by altering the Na/Al ratio. After 350 freeze-thaw cycles, the GPC specimens underwent crushing, washing, and sieving to produce RGAs. Subsequently, their physical properties (apparent density, water absorption, crushing index, and attached mortar content and microstructure (microhardness, SEM, and XRD) were thoroughly examined. The findings indicated that GPC with strength grades of C100, C80, and C60 were capable of enduring 350 freeze-thaw cycles, in contrast to C40, which did not withstand these conditions. RGAs derived from GPC of strength grades C100 and C80 complied with the criteria for Class II recycled aggregates, whereas RGAs produced from GPC of strength grade C60 aligned with the Class III level. A higher-strength grade in the parent concrete correlated with enhanced performance characteristics in the resulting recycled aggregates.

3.
PNAS Nexus ; 3(5): pgae188, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38813522

RESUMO

C-type lectins (CTLs) are a family of carbohydrate-binding proteins and an important component of mosquito saliva. Although CTLs play key roles in immune activation and viral pathogenesis, little is known about their role in regulating dengue virus (DENV) infection and transmission. In this study, we established a homozygous CTL16 knockout Aedes aegypti mutant line using CRISPR/Cas9 to study the interaction between CTL16 and viruses in mosquito vectors. Furthermore, mouse experiments were conducted to confirm the transmission of DENV by CTL16-/- A. aegypti mutants. We found that CTL16 was mainly expressed in the medial lobe of the salivary glands (SGs) in female A. aegypti. CTL16 knockout increased DENV replication and accumulation in the SGs of female A. aegypti, suggesting that CTL16 plays an important role in DENV transmission. We also found a reduced expression of immunodeficiency and Janus kinase/signal transducer and activator of transcription pathway components correlated with increased DENV viral titer, infection rate, and transmission efficiency in the CTL16 mutant strain. The findings of this study provide insights not only for guiding future investigations on the influence of CTLs on immune responses in mosquitoes but also for developing novel mutants that can be used as vector control tools.

4.
Mol Cell Biochem ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782834

RESUMO

This study focused on miR-486-5p in atrial fibrillation (AF) evaluating its clinical significance and revealing its regulatory mechanism in cardiac fibroblasts, aiming to explore a novel biomarker for AF. The study enrolled 131 AF patients and 77 non-AF individuals. With the help of polymerase chain reaction (PCR), the expression of miR-486-5p was evaluated. The significance of miR-486-5p in the diagnosis of AF and the occurrence of left atrial fibrosis (LAF) was assessed by receiver operating curve (ROC) and logistic analyses. The regulatory effect and mechanism of miR-486-5p on cardiac fibrosis were investigated in human cardiac fibroblasts treated with angiotensin II. miR-486-5p was significantly upregulated in AF patients and discriminated AF patients from non-AF individuals. Increasing miR-486-5p showed a significant association with decreasing left ventricular ejection fraction (LVEF), increasing left atrial diameter (LAD) and left ventricular end-diastolic diameter (LVEDd), and the high incidence of LAF in AF patients. Moreover, miR-486-5p was identified as a risk factor for LAF and could distinguish AF patients with LAF and without LAF. In cardiac fibroblasts, angiotensin II induced the upregulation of miR-486-5p and promoted cell proliferation, migration, and collagen synthesis. miR-486-5p negatively regulated forkhead box O1 (FOXO1) and its knockdown could reverse the promoted effect of angiotensin II. FOXO1 alleviated the effect of miR-486-5p, and the miR-486-5p/FOXO1 could activate PI3K/Akt signaling. The activation of PI3K/Akt signaling alleviated the enhanced proliferation, migration, and collagen synthesis of cardiac fibroblasts induced by angiotensin II, and its inhibition showed opposite effects. Increased miR-486-5p served as a biomarker for the diagnosis and development prediction of AF. miR-486-5p regulated cardiac fibroblast viability and collagen synthesis via modulating the PI3K/Akt signaling through targeting FOXO1.

5.
Biomed J ; : 100731, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38677491

RESUMO

BACKGROUND: Autoimmune hepatitis (AIH) is an immune-mediated hepatic disease associated with intense complications. AIH is more common in females and needs effective drugs to treat. Guizhi Fuling Wan (GZFLW) is a traditional Chinese herbal formula used to treat various gynecologic diseases. In this study, we aim to extend the new use of GZFLW for AIH. METHODS: The tandem MS-based analysis was used to identify secondary metabolites in GZFLW. Therapeutic effects of GZFLW were tested in a concanavalin A (Con A)-induced AIH model in mice. Ethnopharmacological mechanisms underlying the antiapoptotic, antioxidant, and immunomodulatory protective effects were determined. RESULTS: Oral administration of GZFLW attenuates AIH in a Con A-induced hepatotoxic model in vivo. The tandem MS-based analysis identified 15 secondary metabolites in GZFLW. The Con A-induced AIH syndromes, including hepatic apoptosis, inflammation, reactive oxygen species accumulation, function failure, and mortality, were significantly alleviated by GZFLW in mice. Mechanistically, GZFLW restrained the caspase-dependent apoptosis, restored the antioxidant system, and decreased pro-inflammatory cytokine production in the livers of Con A-treated mice. Besides, GZFLW repressed the Con A-induced hepatic infiltration of inflammatory cells, splenic T cell activation, and splenomegaly in mice. CONCLUSIONS: Our findings demonstrate the applicable potential of GZFLW in treating AIH. It prompts further investigation of GZFLW as a treatment option for AIH and possibly other hepatic diseases.

6.
J Adv Res ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38548264

RESUMO

INTRODUCTION: Overwhelming neutrophil activation and oxidative stress significantly contribute to acute respiratory distress syndrome (ARDS) pathogenesis. However, the potential of repurposing ribociclib, a cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor used clinically in cancer treatment, for treating neutrophilic ARDS remains uncertain. This study illustrated the ability and underlying mechanism of ribociclib for treating ARDS and neutrophilic inflammation. METHODS: Primary human neutrophils were used to determine the therapeutic effects of ribociclib on respiratory bursts, chemotactic responses, and inflammatory signaling. In vitro and silico analyses were performed to determine the underlying molecular mechanisms. The potential of ribociclib repurposing was evaluated using an in vivo ARDS model in lipopolysaccharide (LPS)-primed mice. RESULTS: We found that treatment using ribociclib markedly limited overabundant oxidative stress (reactive oxygen species [ROS]) production and chemotactic responses (integrin levels and adhesion) in activated human neutrophils. Ribociclib was also shown to act as a selective inhibitor of phosphodiesterase 4 (PDE4), thereby promoting the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway, leading to the inhibition of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) phosphorylation, and calcium influx. Notably, prophylactic administration and post-treatment with ribociclib ameliorated neutrophil infiltration, lung inflammation, accumulation of oxidative stress, pulmonary destruction, and mortality in mice with LPS-induced ARDS. CONCLUSION: We demonstrated for the first time that ribociclib serves as a novel PDE4 inhibitor for treating neutrophilic inflammation and ARDS. The repurposing ribociclib and targeting neutrophilic PDE4 offer a potential off-label alternative for treating lung lesions and other inflammatory conditions.

8.
Parasit Vectors ; 17(1): 106, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439081

RESUMO

BACKGROUND: Although whole-genome sequencing (WGS) is the preferred genotyping method for most genomic analyses, limitations are often experienced when studying genomes characterized by a high percentage of repetitive elements, high linkage, and recombination deserts. The Asian tiger mosquito (Aedes albopictus), for example, has a genome comprising up to 72% repetitive elements, and therefore we set out to develop a single-nucleotide polymorphism (SNP) chip to be more cost-effective. Aedes albopictus is an invasive species originating from Southeast Asia that has recently spread around the world and is a vector for many human diseases. Developing an accessible genotyping platform is essential in advancing biological control methods and understanding the population dynamics of this pest species, with significant implications for public health. METHODS: We designed a SNP chip for Ae. albopictus (Aealbo chip) based on approximately 2.7 million SNPs identified using WGS data from 819 worldwide samples. We validated the chip using laboratory single-pair crosses, comparing technical replicates, and comparing genotypes of samples genotyped by WGS and the SNP chip. We then used the chip for a population genomic analysis of 237 samples from 28 sites in the native range to evaluate its usefulness in describing patterns of genomic variation and tracing the origins of invasions. RESULTS: Probes on the Aealbo chip targeted 175,396 SNPs in coding and non-coding regions across all three chromosomes, with a density of 102 SNPs per 1 Mb window, and at least one SNP in each of the 17,461 protein-coding genes. Overall, 70% of the probes captured the genetic variation. Segregation analysis found that 98% of the SNPs followed expectations of single-copy Mendelian genes. Comparisons with WGS indicated that sites with genotype disagreements were mostly heterozygotes at loci with WGS read depth < 20, while there was near complete agreement with WGS read depths > 20, indicating that the chip more accurately detects heterozygotes than low-coverage WGS. Sample sizes did not affect the accuracy of the SNP chip genotype calls. Ancestry analyses identified four to five genetic clusters in the native range with various levels of admixture. CONCLUSIONS: The Aealbo chip is highly accurate, is concordant with genotypes from WGS with high sequence coverage, and may be more accurate than low-coverage WGS.


Assuntos
Aedes , Mosquitos Vetores , Humanos , Animais , Genótipo , Mosquitos Vetores/genética , Heterozigoto , Aedes/genética
9.
Eur J Ophthalmol ; : 11206721241232029, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38327073

RESUMO

PURPOSE: This study used optical coherence tomography scanning and 3D reconstruction of the macular region in high myopia to examine more thoroughly and carefully the differences between high myopia-related macular complications with and without dome-shape macula (DSM) and to determine whether the DSM's fine structure has an effect on them. METHODS: Retrospective analysis of the medical records of 345 eyes with high myopia who underwent an optical coherence tomography (OCT) examination. They were divided into the DSM group (69 eyes) and the group without DSM (276 eyes). Macular complications between the two groups were compared. The height of the DSM and the diameter of the dome base were measured. And then the association between DSM type, protrusion height and macular problems were analyzed. RESULTS: Epiretinal membrane (ERM) and extrafoveal schisis occurred more frequently in the DSM group, but the was no statistically significant difference in the frequency of foveal schisis between the two groups. The majority of eyes in the DSM categorization had a horizontal oval-shaped domain. In the DSM group, there was no evident difference in the percentage of eyes with macular complications in the groups below 150 um and above 150 um. CONCLUSIONS: OCT examination-based fine macular structure analysis reveals that DSM affects various macular problems in distinct ways. DSM could increase the risk of extrafoveal schisis and ERM while decreasing the risk of foveal schisis. The height of the DSM had no obvious impact on the prevalence of macular complications.

11.
Seizure ; 117: 98-104, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364333

RESUMO

PURPOSE: PAFAH1B1, also known as LIS1, is associated with type I lissencephaly in humans, which is a severe developmental brain disorder believed to result from abnormal neuronal migration. Our objective was to characterize the genotypes and phenotypes of PAFAH1B1-related epilepsy. METHODS: We conducted a comprehensive analysis of the medical histories, magnetic resonance imaging findings, and video-electroencephalogram recordings of 11 patients with PAFAH1B1 variants at the Neurology Department of Beijing Children's Hospital from June 2017 to November 2022. RESULTS: The age of onset of epilepsy ranged from 2 months to 4 years, with a median onset age of 5 months. Among these 11 patients (comprising 6 boys and 5 girls), all were diagnosed with lissencephaly type 1. Predominantly, generalized tonic-clonic and spasm seizures characterized PAFAH1B1-related epilepsy. Additionally, 10 out of the 11 patients exhibited severe developmental disorders. All patients exhibited de novo variants, with three individuals displaying 17p13.3 deletions linked to haploinsufficiency of PAFAH1B1. Four variants were previously unreported. Notably, three patients with 17p13.3 deletions displayed developmental delay and drug resistant epilepsy, whereas the single patient with mild developmental delay, Intelligence Quotient (IQ) 57 and well-controlled seizures had a splicing-site variant. CONCLUSION: The severity of the phenotype in patients with PAFAH1B1 variants ranged from drug-responsive seizures to severe epileptic encephalopathy. These observations underscore the clinical heterogeneity of PAFAH1B1-related disorders, with most patients exhibiting developmental disorders. Moreover, the severity of epilepsy appears to be linked to genetic variations.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase , Epilepsia , Proteínas Associadas aos Microtúbulos , Humanos , Masculino , Feminino , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Pré-Escolar , Lactente , Epilepsia/genética , Epilepsia/fisiopatologia , Eletroencefalografia , Fenótipo , Imageamento por Ressonância Magnética , Deficiências do Desenvolvimento/genética , Criança
12.
Epilepsia Open ; 9(2): 643-652, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38235958

RESUMO

OBJECTIVE: To investigate the effectiveness and tolerability of ketogenic diet therapy (KDT) in patients with developmental and epileptic encephalopathy (DEE) associated with genetic etiology which onset within the first 6 months of life, and to explore the association between response to KDT and genotype/clinical parameters. METHODS: We retrospectively reviewed data from patients with genetic DEE who started KDT at Beijing Children's Hospital between January 1, 2016, and December 31, 2021. RESULTS: A total of 32 patients were included, involving 14 pathogenic or likely pathogenic single genes, and 16 (50.0%) patients had sodium/potassium channel gene variants. The median age at onset of epilepsy was 1.0 (IQR: 0.1, 3.0) months. The median age at initiation of KDT was 10.0 (IQR: 5.3, 13.8) months and the median duration of maintenance was 14.0 (IQR: 7.0, 26.5) months, with a mean blood ß-hydroxybutyrate of 2.49 ± 0.62 mmol/L. During the maintenance period of KDT, 26 (81.3%) patients had a ≥50% reduction of seizure frequency, of which 12 (37.5%) patients achieved seizure freedom. Better responses were observed in patients with STXBP1 variants, with four out of five patients achieving seizure freedom. There were no statistically differences in the age of onset, duration of epilepsy before KDT, blood ketone values, or the presence of ion channel gene variants between the seizure-free patients and the others. The most common adverse effects were gastrointestinal side effects, which occurred in 21 patients (65.6%), but all were mild and easily corrected. Only one patient discontinued KDT due to nephrolithiasis. SIGNIFICANCE: KDT is effective in treating early onset genetic DEE, and no statistically significant relationship has been found between genotype and effectiveness in this study. KDT is well tolerated in most young patients, with mild and reversible gastrointestinal side effects being the most common, but usually not the reason to discontinue KDT. PLAIN LANGUAGE SUMMARY: This study evaluated the response and side effects of ketogenic diet therapy (KDT) in patients who had seizures within the first 6 months of life, and were diagnosed with genetic developmental and epileptic encephalopathy (DEE), a type of severe epilepsy with developmental delay caused by gene variants. Thirty-two patients involving 14 gene variants who started KDT at Beijing Children's Hospital between were included. KDT was effective in treating early onset genetic DEE in this cohort, and patients with STXBP1 variants responded better; however, no statistically significant relationship was found between gene variant and response. Most young patients tolerated KDT well, with mild and reversible gastrointestinal side effects being the most common.


Assuntos
Dieta Cetogênica , Epilepsia , Criança , Humanos , Estudos Retrospectivos , Dieta Cetogênica/efeitos adversos , Epilepsia/genética , Convulsões , Genótipo , Corpos Cetônicos , Canais de Sódio/genética
13.
Mol Neurodegener ; 19(1): 12, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273330

RESUMO

BACKGROUND: Mitochondrial dysfunction and toxic protein aggregates have been shown to be key features in the pathogenesis of neurodegenerative diseases, such as Parkinson's disease (PD). Functional analysis of genes linked to PD have revealed that the E3 ligase Parkin and the mitochondrial kinase PINK1 are important factors for mitochondrial quality control. PINK1 phosphorylates and activates Parkin, which in turn ubiquitinates mitochondrial proteins priming them and the mitochondrion itself for degradation. However, it is unclear whether dysregulated mitochondrial degradation or the toxic build-up of certain Parkin ubiquitin substrates is the driving pathophysiological mechanism leading to PD. The iron-sulphur cluster containing proteins CISD1 and CISD2 have been identified as major targets of Parkin in various proteomic studies. METHODS: We employed in vivo Drosophila and human cell culture models to study the role of CISD proteins in cell and tissue viability as well as aged-related neurodegeneration, specifically analysing aspects of mitophagy and autophagy using orthogonal assays. RESULTS: We show that the Drosophila homolog Cisd accumulates in Pink1 and parkin mutant flies, as well as during ageing. We observed that build-up of Cisd is particularly toxic in neurons, resulting in mitochondrial defects and Ser65-phospho-Ubiquitin accumulation. Age-related increase of Cisd blocks mitophagy and impairs autophagy flux. Importantly, reduction of Cisd levels upregulates mitophagy in vitro and in vivo, and ameliorates pathological phenotypes in locomotion, lifespan and neurodegeneration in Pink1/parkin mutant flies. In addition, we show that pharmacological inhibition of CISD1/2 by rosiglitazone and NL-1 induces mitophagy in human cells and ameliorates the defective phenotypes of Pink1/parkin mutants. CONCLUSION: Altogether, our studies indicate that Cisd accumulation during ageing and in Pink1/parkin mutants is a key driver of pathology by blocking mitophagy, and genetically and pharmacologically inhibiting CISD proteins may offer a potential target for therapeutic intervention.


Assuntos
Proteínas de Drosophila , Doença de Parkinson , Animais , Humanos , Idoso , Mitofagia/fisiologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteômica , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Doença de Parkinson/metabolismo , Proteínas Mitocondriais/metabolismo , Drosophila/metabolismo , Mitocôndrias/metabolismo , Ubiquitinas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Drosophila/genética
14.
Cell Death Dis ; 15(1): 71, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238337

RESUMO

Alzheimer's disease (AD), an age-related progressive neurodegenerative disorder, exhibits reduced cognitive function with no cure to date. One of the reasons for AD is the accumulation of Amyloid-beta 42 (Aß42) plaque(s) that trigger aberrant gene expression and signaling, which results in neuronal cell death by an unknown mechanism(s). Misexpression of human Aß42 in the developing retina of Drosophila exhibits AD-like neuropathology. Small non-coding RNAs, microRNAs (miRNAs), post-transcriptionally regulate the expression of their target genes and thereby regulate different signaling pathways. In a forward genetic screen, we identified miR-277 (human ortholog is hsa-miR-3660) as a genetic modifier of Aß42-mediated neurodegeneration. Loss-of-function of miR-277 enhances the Aß42-mediated neurodegeneration. Whereas gain-of-function of miR-277 in the GMR > Aß42 background downregulates cell death to maintain the number of neurons and thereby restores the retinal axonal targeting defects indicating the functional rescue. In addition, gain-of-function of miR-277 rescues the eclosion- and climbing assays defects observed in GMR > Aß42 background. Thus, gain-of-function of miR-277 rescues both structurally as well as functionally the Aß42-mediated neurodegeneration. Furthermore, we identified head involution defective (hid), an evolutionarily conserved proapoptotic gene, as one of the targets of miR-277 and validated these results using luciferase- and qPCR -assays. In the GMR > Aß42 background, the gain-of-function of miR-277 results in the reduction of hid transcript levels to one-third of its levels as compared to GMR > Aß42 background alone. Here, we provide a novel molecular mechanism where miR-277 targets and downregulates proapoptotic gene, hid, transcript levels to rescue Aß42-mediated neurodegeneration by blocking cell death. These studies shed light on molecular mechanism(s) that mediate cell death response following Aß42 accumulation seen in neurodegenerative disorders in humans and provide new therapeutic targets for neurodegeneration.


Assuntos
Doença de Alzheimer , MicroRNAs , Animais , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Neurônios/metabolismo , Axônios/metabolismo , Drosophila/metabolismo , MicroRNAs/metabolismo , Fragmentos de Peptídeos/metabolismo
15.
Int J Biometeorol ; 68(1): 133-141, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37950095

RESUMO

Dengue is one of the world's most rapidly spreading mosquito-borne viral diseases. As it is found mostly in urban and semi-urban areas, urbanization and associated human activities that affect the environment and larval habitats could become risk factors (e.g., lane width, conditions of street ditches) for the spread of dengue. However, there are currently no systematic studies of micro-scale urbanization-based risk factors for the spread of dengue epidemics. We describe the study area, two micro-scale environmental risk factors associated with urbanization, and meteorological data. Since the observations involve spatial and temporal correlations, we also use some statistical methods for the analysis of spatial and spatial-temporal data for the relationship between urbanization and dengue. In this study, we analyzed data from Kaohsiung, a densely populated city in southern Taiwan, and found a positive correlation between environmental risk factors associated with urbanization (ditches positive for mosquito larvae and closely packed streets termed "dengue lanes") and clustering effects in dengue cases. The statistical analysis also revealed that the occurrence of positive ditches was significantly associated with that of dengue lanes in the study area. The relationship between climate variables and positive ditches was also analyzed in this paper, indicating a relationship between dengue and both rainfall and temperature, with temperature having a greater effect. Overall, this work is immediately relevant and applicable for policymakers in government, who will need to reduce these favorable habitats for vector-born disease spreaders and implement regulations for new urban constructions to thus reduce dengue spread in future outbreaks.


Assuntos
Dengue , Epidemias , Animais , Humanos , Urbanização , Dengue/epidemiologia , Cidades/epidemiologia , Fatores de Risco , Larva
16.
Theor Appl Genet ; 137(1): 1, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071267

RESUMO

KEY MESSAGE: Sr65 in chromosome 1A of Indian wheat landrace Hango-2 is a potentially useful all-stage resistance gene that currently protects wheat from stem rust in Australia, India, Africa and Europe. Stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), threatened global wheat production with the appearance of widely virulent races that included TTKSK and TTRTF. Indian landrace Hango-2 showed resistance to Pgt races in India and Australia. Screening of a Hango-2/Avocet 'S' (AvS) recombinant inbred line population identified two stem rust resistance genes, a novel gene (temporarily named as SrH2) from Hango-2 and Sr26 from AvS. A mapping population segregating for SrH2 alone was developed from two recombinant lines. SrH2 was mapped on the short arm of chromosome 1A, where it was flanked by KASP markers KASP_7944 (proximal) and KASP_12147 (distal). SrH2 was delimited to an interval of 1.8-2.3 Mb on chromosome arm 1AS. The failure to detect candidate genes through MutRenSeq and comparative genomic analysis with the pan-genome dataset indicated the necessity to generate a Hango-2 specific assembly for detecting the gene sequence linked with SrH2 resistance. MutRenSeq however enabled identification of SrH2-linked KASP marker sunCS_265. Markers KASP_12147 and sunCS_265 showed 92% and 85% polymorphism among an Australian cereal cultivar diversity panel and can be used for marker-assisted selection of SrH2 in breeding programs. The effectiveness of SrH2 against Pgt races from Europe, Africa, India, and Australia makes it a valuable resource for breeding stem rust-resistant wheat cultivars. Since no wheat-derived gene was previously located in chromosome arm 1AS, SrH2 represents a new locus and named as SR65.


Assuntos
Basidiomycota , Triticum , Triticum/genética , Mapeamento Cromossômico , Resistência à Doença/genética , Austrália , Melhoramento Vegetal , Doenças das Plantas/genética
17.
BMC Plant Biol ; 23(1): 590, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38008766

RESUMO

BACKGROUND: Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), poses a threat to global wheat production. Deployment of widely effective resistance genes underpins management of this ongoing threat. This study focused on the mapping of stripe rust resistance gene YR63 from a Portuguese hexaploid wheat landrace AUS27955 of the Watkins Collection. RESULTS: YR63 exhibits resistance to a broad spectrum of Pst races from Australia, Africa, Asia, Europe, Middle East and South America. It was mapped to the short arm of chromosome 7B, between two single nucleotide polymorphic (SNP) markers sunCS_YR63 and sunCS_67, positioned at 0.8 and 3.7 Mb, respectively, in the Chinese Spring genome assembly v2.1. We characterised YR63 locus using an integrated approach engaging targeted genotyping-by-sequencing (tGBS), mutagenesis, resistance gene enrichment and sequencing (MutRenSeq), RNA sequencing (RNASeq) and comparative genomic analysis with tetraploid (Zavitan and Svevo) and hexaploid (Chinese Spring) wheat genome references and 10+ hexaploid wheat genomes. YR63 is positioned at a hot spot enriched with multiple nucleotide-binding and leucine rich repeat (NLR) and kinase domain encoding genes, known widely for defence against pests and diseases in plants and animals. Detection of YR63 within these gene clusters is not possible through short-read sequencing due to high homology between members. However, using the sequence of a NLR member we were successful in detecting a closely linked SNP marker for YR63 and validated on a panel of Australian bread wheat, durum and triticale cultivars. CONCLUSIONS: This study highlights YR63 as a valuable source for resistance against Pst in Australia and elsewhere. The closely linked SNP marker will facilitate rapid introgression of YR63 into elite cultivars through marker-assisted selection. The bottleneck of this study reinforces the necessity for a long-read sequencing such as PacBio or Oxford Nanopore based techniques for accurate detection of the underlying resistance gene when it is part of a large gene cluster.


Assuntos
Basidiomycota , Triticum , Mapeamento Cromossômico , Triticum/genética , Resistência à Doença/genética , Austrália , Nucleotídeos , Doenças das Plantas/genética , Basidiomycota/genética
18.
Eur J Med Res ; 28(1): 482, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932817

RESUMO

BACKGROUND: Dengue virus serotype 2 (DENV-2) was the major serotype in the 2015 dengue outbreak in Taiwan, while DENV-1 and DENV-3 were dominant between 2005 and 2014. We aimed to investigate whether DENV-2 contributed to disease severity and mortality in the outbreak in Kaohsiung city, Taiwan. METHODS: We collected serum samples from dengue patients to detect the presence of DENV and determine the serotypes by using quantitative reverse transcription-polymerase chain reaction. Our cohorts comprised 105 DENV-1-infected cases and 1,550 DENV-2-infected cases. Demographic data, DENV serotype, and comorbidities were covariates for univariate and multivariate analyses to explore the association with severity and mortality. RESULTS: The results suggested that DENV-1 persisted and circulated, while DENV-2 was dominant during the dengue outbreak that occurred between September and December 2015. However, DENV-2 did not directly contribute to either severity or mortality. Aged patients and patients with diabetes mellitus (DM) or moderate to severe chronic kidney disease (CKD) had a higher risk of developing severe dengue. The mortality of dengue patients was related to a higher Charlson comorbidity index score and severe dengue. Among DENV-2-infected patients and older patients, preexisting anti-dengue IgG, DM, and moderate to severe CKD were associated with severe dengue. Moreover, female sex and severe dengue were associated with a significantly higher risk of death. CONCLUSIONS: Our findings highlight the importance of timely serological testing in elderly patients to identify potential secondary infections and focus on the meticulous management of elderly patients with DM or moderate to severe CKD to reduce dengue-related death.


Assuntos
Vírus da Dengue , Dengue , Insuficiência Renal Crônica , Dengue Grave , Idoso , Humanos , Feminino , Sorogrupo , Dengue/diagnóstico , Dengue/epidemiologia , Dengue Grave/epidemiologia , Taiwan/epidemiologia , Surtos de Doenças , Insuficiência Renal Crônica/epidemiologia
19.
Sci Rep ; 13(1): 16583, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789031

RESUMO

The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first detected in October 2021, possessed many mutations compared to previous variants. We aimed to identify and analyze SARS-CoV-2 Omicron subvariants among coronavirus disease 2019 (COVID-19) patients between January 2022 and September 2022 in Taiwan. The results revealed that BA.2.3.7, featuring K97E and G1251V in the spike protein compared with BA.2, emerged in March 2022 and persistently dominated between April 2022 and August 2022, resulting in the largest COVID-19 outbreak since 2020. The accumulation of amino acid (AA) variations, mainly AA substitution, in the spike protein was accompanied by increasing severity in Omicron-related COVID-19 between April 2022 and January 2023. Older patients were more likely to have severe COVID-19, and comorbidity was a risk factor for COVID-19-related mortality. The accumulated case fatality rate (CFR) dropped drastically after Omicron variants, mainly BA.2.3.7, entered Taiwan after April 2022, and the CFR was 0.16% in Taiwan, which was lower than that worldwide (0.31%) between April 2021 and January 2023. The relatively low CFR in Omicron-related COVID-19 patients can be attributed to adjustments to public health policies, promotion of vaccination programs, effective antiviral drugs, and the lower severity of the Omicron variant.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Taiwan/epidemiologia , Glicoproteína da Espícula de Coronavírus
20.
Chem Commun (Camb) ; 59(88): 13191-13194, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37850458

RESUMO

In this study, we synthesized two new two-dimensional (2D) covalent organic frameworks (COFs), COF-TA and COF-DP, by combining 4-connected D2h-symmetric and 2-connected non-centrosymmetric C2-symmetric building blocks. Unlike the typical sql topology, these COFs exhibit an unconventional kgm topology characterized by a favorable anti-parallel stacking arrangement, which results in a lower energy configuration. Notably, COF-DP, with its unique D-A-D structural motif and photosensitive properties, demonstrates a narrow band gap and excellent photothermal conversion capabilities, making it a promising material for photothermal imaging applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA