Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 12(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35244161

RESUMO

Simulation can be an efficient approach to design, evaluate, and optimize breeding programs. In the era of modern agriculture, breeding programs can benefit from a simulator that integrates various sources of big data and accommodates state-of-the-art statistical models. The initial release of XSim, in which stochastic descendants can be efficiently simulated with a drop-down strategy, has mainly been used to validate genomic selection results. In this article, we present XSim Version 2 that is an open-source tool and has been extensively redesigned with additional features to meet the needs in modern breeding programs. It seamlessly incorporates multiple statistical models for genetic evaluations, such as GBLUP, Bayesian alphabets, and neural networks, and it can effortlessly simulate successive generations of descendants based on complex mating schemes by the aid of its modular design. Case studies are presented to demonstrate the flexibility of XSim Version 2 in simulating crossbreeding in animal and plant populations. Modern biotechnology, including double haploids and embryo transfer, can all be simultaneously integrated into the mating plans that drive the simulation. From a computing perspective, XSim Version 2 is implemented in Julia, which is a computer language that retains the readability of scripting languages (e.g. R and Python) without sacrificing much computational speed compared to compiled languages (e.g. C). This makes XSim Version 2 a simulation tool that is relatively easy for both champions and community members to maintain, modify, or extend in order to improve their breeding programs. Functions and operators are overloaded for a better user interface so they may concatenate, subset, summarize, and organize simulated populations at each breeding step. With the strong and foreseeable demands in the community, XSim Version 2 will serve as a modern simulator bridging the gaps between theories and experiments with its flexibility, extensibility, and friendly interface.


Assuntos
Genômica , Reprodução , Animais , Teorema de Bayes , Simulação por Computador , Genômica/métodos , Modelos Genéticos
2.
Sci Rep ; 11(1): 3336, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558558

RESUMO

Alfalfa is the most widely cultivated forage legume, with approximately 30 million hectares planted worldwide. Genetic improvements in alfalfa have been highly successful in developing cultivars with exceptional winter hardiness and disease resistance traits. However, genetic improvements have been limited for complex economically important traits such as biomass. One of the major bottlenecks is the labor-intensive phenotyping burden for biomass selection. In this study, we employed two alfalfa fields to pave a path to overcome the challenge by using UAV images with fully automatic field plot segmentation for high-throughput phenotyping. The first field was used to develop the prediction model and the second field to validate the predictions. The first and second fields had 808 and 1025 plots, respectively. The first field had three harvests with biomass measured in May, July, and September of 2019. The second had one harvest with biomass measured in September of 2019. These two fields were imaged one day before harvesting with a DJI Phantom 4 pro UAV carrying an additional Sentera multispectral camera. Alfalfa plot images were extracted by GRID software to quantify vegetative area based on the Normalized Difference Vegetation Index. The prediction model developed from the first field explained 50-70% (R Square) of biomass variation in the second field by incorporating four features from UAV images: vegetative area, plant height, Normalized Green-Red Difference Index, and Normalized Difference Red Edge Index. This result suggests that UAV-based, high-throughput phenotyping could be used to improve the efficiency of the biomass selection process in alfalfa breeding programs.

3.
Animals (Basel) ; 10(11)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167458

RESUMO

High-yield and high-quality of milk are the primary goals of dairy production. Understanding the genetic architecture underlying these milk-related traits is beneficial so that genetic variants can be targeted toward the genetic improvement. In this study, we measured five milk production and quality traits in Holstein cattle population from China. These traits included milk yield, fat, and protein. We used the estimated breeding values as dependent variables to conduct the genome-wide association studies (GWAS). Breeding values were estimated through pedigree relationships by using a linear mixed model. Genotyping was carried out on the individuals with phenotypes by using the Illumina BovineSNP150 BeadChip. The association analyses were conducted by using the fixed and random model Circulating Probability Unification (FarmCPU) method. A total of ten single-nucleotide polymorphisms (SNPs) were detected above the genome-wide significant threshold (p < 4.0 × 10-7), including six located in previously reported quantitative traits locus (QTL) regions. We found eight candidate genes within distances of 120 kb upstream or downstream to the associated SNPs. The study not only identified the effect of DGAT1 gene on milk fat and protein, but also discovered novel genetic loci and candidate genes related to milk traits. These novel genetic loci would be an important basis for molecular breeding in dairy cattle.

4.
BMC Genomics ; 20(1): 827, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31703627

RESUMO

BACKGROUND: Dual-purpose cattle are more adaptive to environmental challenges than single-purpose dairy or beef cattle. Balance among milk, reproductive, and mastitis resistance traits in breeding programs is therefore more critical for dual-purpose cattle to increase net income and maintain well-being. With dual-purpose Xinjiang Brown cattle adapted to the Xinjiang Region in northwestern China, we conducted genome-wide association studies (GWAS) to dissect the genetic architecture related to milk, reproductive, and mastitis resistance traits. Phenotypic data were collected for 2410 individuals measured during 1995-2017. By adding another 445 ancestors, a total of 2855 related individuals were used to derive estimated breeding values for all individuals, including the 2410 individuals with phenotypes. Among phenotyped individuals, we genotyped 403 cows with the Illumina 150 K Bovine BeadChip. RESULTS: GWAS were conducted with the FarmCPU (Fixed and random model circulating probability unification) method. We identified 12 markers significantly associated with six of the 10 traits under the threshold of 5% after a Bonferroni multiple test correction. Seven of these SNPs were in QTL regions previously identified to be associated with related traits. One identified SNP, BovineHD1600006691, was significantly associated with both age at first service and age at first calving. This SNP directly overlapped a QTL previously reported to be associated with calving ease. Within 160 Kb upstream and downstream of each significant SNP identified, we speculated candidate genes based on functionality. Four of the SNPs were located within four candidate genes, including CDH2, which is linked to milk fat percentage, and GABRG2, which is associated with milk protein yield. CONCLUSIONS: These findings are beneficial not only for breeding through marker-assisted selection, but also for genome editing underlying the related traits to enhance the overall performance of dual-purpose cattle.


Assuntos
Bovinos/genética , Bovinos/fisiologia , Estudo de Associação Genômica Ampla , Leite/metabolismo , Reprodução/genética , Animais , Bovinos/metabolismo , Resistência à Doença/genética , Feminino , Mastite/genética , Fenótipo
5.
Bioinformatics ; 34(11): 1925-1927, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29342241

RESUMO

Summary: The ultimate goal of genomic research is to effectively predict phenotypes from genotypes so that medical management can improve human health and molecular breeding can increase agricultural production. Genomic prediction or selection (GS) plays a complementary role to genome-wide association studies (GWAS), which is the primary method to identify genes underlying phenotypes. Unfortunately, most computing tools cannot perform data analyses for both GWAS and GS. Furthermore, the majority of these tools are executed through a command-line interface (CLI), which requires programming skills. Non-programmers struggle to use them efficiently because of the steep learning curves and zero tolerance for data formats and mistakes when inputting keywords and parameters. To address these problems, this study developed a software package, named the Intelligent Prediction and Association Tool (iPat), with a user-friendly graphical user interface. With iPat, GWAS or GS can be performed using a pointing device to simply drag and/or click on graphical elements to specify input data files, choose input parameters and select analytical models. Models available to users include those implemented in third party CLI packages such as GAPIT, PLINK, FarmCPU, BLINK, rrBLUP and BGLR. Users can choose any data format and conduct analyses with any of these packages. File conversions are automatically conducted for specified input data and selected packages. A GWAS-assisted genomic prediction method was implemented to perform genomic prediction using any GWAS method such as FarmCPU. iPat was written in Java for adaptation to multiple operating systems including Windows, Mac and Linux. Availability and implementation: The iPat executable file, user manual, tutorials and example datasets are freely available at http://zzlab.net/iPat. Contact: zhiwu.zhang@wsu.edu.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Fenótipo , Software , Genômica/métodos , Genótipo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA