Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cancer Cell ; 42(8): 1386-1400.e8, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39137727

RESUMO

Changes in plasma and fecal metabolomes in colorectal cancer (CRC) progression (normal-adenoma-CRC) remain unclear. Here, plasma and fecal samples were collected from four independent cohorts of 1,251 individuals (422 CRC, 399 colorectal adenoma [CRA], and 430 normal controls [NC]). By metabolomic profiling, signature plasma and fecal metabolites with consistent shift across NC, CRA, and CRC are identified, including CRC-enriched oleic acid and CRC-depleted allocholic acid. Oleic acid exhibits pro-tumorigenic effects in CRC cells, patient-derived organoids, and two murine CRC models, whereas allocholic acid has opposing effects. By integrative analysis, we found that oleic acid or allocholic acid directly binds to α-enolase or farnesoid X receptor-1 in CRC cells, respectively, to modulate cancer-associated pathways. Clinically, we establish a panel of 17 plasma metabolites that accurately diagnoses CRC in a discovery and three validation cohorts (AUC = 0.848-0.987). Overall, we characterize metabolite signatures, mechanistic significance, and diagnostic potential of plasma and fecal metabolomes in CRC.


Assuntos
Adenoma , Biomarcadores Tumorais , Neoplasias Colorretais , Progressão da Doença , Fezes , Metabolômica , Humanos , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/sangue , Neoplasias Colorretais/patologia , Fezes/química , Adenoma/metabolismo , Adenoma/diagnóstico , Adenoma/patologia , Adenoma/sangue , Metabolômica/métodos , Animais , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/sangue , Camundongos , Masculino , Feminino , Detecção Precoce de Câncer/métodos , Metaboloma , Pessoa de Meia-Idade , Ácido Oleico/metabolismo , Ácido Oleico/sangue , Idoso
2.
J Nutr ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39128547

RESUMO

BACKGROUND: Prior researches have highlighted inverse associations between levels of circulating very-long chain saturated fatty acids (VLCSFAs) and coronary heart disease (CHD). However, the intricate links involving VLCSFAs, gut microbiota, and bile acids remain underexplored. OBJECTIVE: This study examined the association of erythrocyte VLCSFAs with CHD incidence, focusing on the mediating role of gut microbiota and fecal bile acids. METHODS: This 10-year prospective study included 2383 participants without CHD at baseline. Erythrocyte VLCSFAs (arachidic acid [C20:0], behenic acid [C22:0], and lignoceric acid [C24:0]) were measured using gas chromatography at baseline and 274 CHD incidents were documented in triennial follow-ups. Gut microbiota in 1744 participants and fecal bile acid metabolites in 945 participants were analyzed using 16S rRNA sequencing and UPLC-MS/MS at middle-term. RESULTS: The multivariable-adjusted HRs (95%CI) for CHD incidence in highest vs. lowest quartiles were 0.87 (0.61, 1.25) for C20:0, 0.63 (0.42,0.96) for C22:0, 0.59 (0.41,0.85) for C24:0, and 0.57 (0.39, 0.83) for total VLCSFAs. Participants with higher total VLCSFA levels exhibited increased abundances of Holdemanella, Coriobacteriales Incertae Sedis spp., Ruminococcaceae UCG-005 and UCG-010, and Lachnospiraceae ND3007 group. These five genera generated microbial score (ODMS) that accounted for 11.52% of the total VLCSFAs-CHD association (Pmediation =0.018). Bile acids tauro_α_ and tauro_ß_muricholic acid (T_α_ and T_ß_MCA) were inversely associated with ODMS and positively associated with incident CHD. Opposite associations were found for glycolithocholic acid (GLCA), glycodeoxycholic acid (GDCA). Mediation analyses indicated that GLCA, GDCA, and T_α_ and T_ß_MCA explained 56.40%, 35.19%, and 26.17% of the ODMS-CHD association, respectively (Pmediation =0.002, 0.008, and 0.020). CONCLUSIONS: Elevated erythrocyte VLCSFAs are inversely associated with CHD risk in the Chinese population, with gut microbiota and fecal bile acid profiles potentially mediating this association. The identified microbiota and bile acid metabolites may serve as potential intervention targets in future studies. CLINICAL TRIAL REGISTRY NUMBER: NCT03179657.

3.
Cell Host Microbe ; 32(8): 1365-1379.e10, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39059397

RESUMO

Peptostreptococcus stomatis (P. stomatis) is enriched in colorectal cancer (CRC), but its causality and translational implications in CRC are unknown. Here, we show that P. stomatis accelerates colonic tumorigenesis in ApcMin/+ and azoxymethane/dextran sodium sulfate (AOM-DSS) models by inducing cell proliferation, suppressing apoptosis, and impairing gut barrier function. P. stomatis adheres to CRC cells through its surface protein fructose-1,6-bisphosphate aldolase (FBA) that binds to the integrin α6/ß4 receptor on CRC cells, leading to the activation of ERBB2 and the downstream MEK-ERK-p90 cascade. Blockade of the FBA-integrin α6/ß4 abolishes ERBB2-mitogen-activated protein kinase (MAPK) activation and the protumorigenic effect of P. stomatis. P. stomatis-driven ERBB2 activation bypasses receptor tyrosine kinase (RTK) blockade by EGFR inhibitors (cetuximab, erlotinib), leading to drug resistance in xenograft and spontaneous CRC models of KRAS-wild-type CRC. P. stomatis also abrogates BRAF inhibitor (vemurafenib) efficacy in BRAFV600E-mutant CRC xenografts. Thus, we identify P. stomatis as an oncogenic bacterium and a contributory factor for non-responsiveness to RTK inhibitors in CRC.


Assuntos
Carcinogênese , Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Peptostreptococcus , Receptor ErbB-2 , Animais , Humanos , Camundongos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Frutose-Bifosfato Aldolase/metabolismo , Frutose-Bifosfato Aldolase/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , /farmacologia
4.
Cancer Res ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900944

RESUMO

The N6-methyladenosine (m6A) RNA binding protein YTHDF1 is frequently overexpressed in colorectal cancer (CRC) and drives chemotherapeutic resistance. To systematically identify druggable targets in CRC with high expression of YTHDF1, we employed a CRISPR/Cas9 screening strategy that revealed RUVBL1 and RUVBL2 as putative targets.RUVBL1/2 were overexpressed in primary CRC samples and represented independent predictors of poor patient prognosis. Functionally, loss of RUVBL1/2 preferentially impaired the growth ofYTHDF1-high CRC cells, patient-derived primary CRC organoids, and subcutaneous xenografts. Mechanistically, YTHFD1 and RUVBL1/2 formed a positive feed-forward circuit to accelerate oncogenic translation. YTHDF1 bound to m6A-modified RUVBL1/2 mRNA to promote translation initiation and protein expression. Co-IP and mass spectrometry identified that RUVBL1/2 reciprocally interacted with YTHDF1 at 40S translation initiation complexes. Consequently, RUVBL1/2 depletion stalled YTHDF1-driven oncogenic translation and nascent protein biosynthesis, leading to proliferative arrest and apoptosis. Ribo-seq revealed that RUVBL1/2 loss impaired the activation of MAPK, RAS and PI3K-AKT signaling induced by YTHDF1. Finally, blockade of RUVBL1/2 by the pharmacological inhibitor CB6644 or vesicle-like nanoparticle-encapsulated siRNAs preferentially arrested the growth of YTHDF1-expressing CRC in vitro and in vivo. Together, this study uncovered that RUVBL1/2 are potential prognostic markers and druggable targets that regulate protein translation in YTHDF1-high CRC.

5.
Eur J Radiol ; 175: 111459, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636408

RESUMO

OBJECTIVES: This study aimed to investigate tumor heterogeneity of colorectal liver metastases (CRLM) and stratify the patients into different risk groups of prognoses following liver resection by applying an unsupervised radiomics machine-learning approach to preoperative CT images. METHODS: This retrospective study retrieved clinical information and CT images of 197 patients with CRLM from The Cancer Imaging Archive (TCIA) database. Radiomics features were extracted from a segmented liver lesion identified at the portal venous phase. Those features which showed high stability, non-redundancy, and indicative information were selected. An unsupervised consensus clustering analysis on these features was adopted to identify subgroups of CRLM patients. Overall survival (OS), disease-free survival (DFS), and liver-specific DFS were compared between the identified subgroups. Cox regression analysis was applied to evaluate prognostic risk factors. RESULTS: A total of 851 radiomics features were extracted, and 56 robust features were finally selected for unsupervised clustering analysis which identified two distinct subgroups (96 and 101 patients respectively). There were significant differences in the OS, DFS, and liver-specific DFS between the subgroups (all log-rank p < 0.05). The subgroup with worse outcome using the proposed radiomics model was consistently associated with shorter OS, DFS, and liver-specific DFS, with hazard ratios of 1.78 (95 %CI: 1.12-2.83), 1.72 (95 %CI: 1.16-2.54), and 1.59 (95 %CI: 1.10-2.31), respectively. The general performance of this radiomics model outperformed the traditional Clinical Risk Score and Tumor Burden Score in the prognosis prediction after surgery for CRLM. CONCLUSION: Radiomics features derived from preoperative CT images can reveal the heterogeneity of CRLM and stratify the patients with CRLM into subgroups with significantly different clinical outcomes.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Tomografia Computadorizada por Raios X , Aprendizado de Máquina não Supervisionado , Humanos , Masculino , Feminino , Neoplasias Colorretais/patologia , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/secundário , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X/métodos , Prognóstico , Estudos Retrospectivos , Idoso , Adulto , Taxa de Sobrevida , Idoso de 80 Anos ou mais , Aprendizado de Máquina , Radiômica
6.
Cell ; 187(4): 882-896.e17, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38295787

RESUMO

Streptococcus anginosus (S. anginosus) was enriched in the gastric mucosa of patients with gastric cancer (GC). Here, we show that S. anginosus colonized the mouse stomach and induced acute gastritis. S. anginosus infection spontaneously induced progressive chronic gastritis, parietal cell atrophy, mucinous metaplasia, and dysplasia in conventional mice, and the findings were confirmed in germ-free mice. In addition, S. anginosus accelerated GC progression in carcinogen-induced gastric tumorigenesis and YTN16 GC cell allografts. Consistently, S. anginosus disrupted gastric barrier function, promoted cell proliferation, and inhibited apoptosis. Mechanistically, we identified an S. anginosus surface protein, TMPC, that interacts with Annexin A2 (ANXA2) receptor on gastric epithelial cells. Interaction of TMPC with ANXA2 mediated attachment and colonization of S. anginosus and induced mitogen-activated protein kinase (MAPK) activation. ANXA2 knockout abrogated the induction of MAPK by S. anginosus. Thus, this study reveals S. anginosus as a pathogen that promotes gastric tumorigenesis via direct interactions with gastric epithelial cells in the TMPC-ANXA2-MAPK axis.


Assuntos
Gastrite , Neoplasias Gástricas , Infecções Estreptocócicas , Streptococcus anginosus , Animais , Humanos , Camundongos , Atrofia/patologia , Carcinogênese , Transformação Celular Neoplásica , Mucosa Gástrica , Gastrite/patologia , Inflamação/patologia , Proteínas Quinases Ativadas por Mitógeno , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Streptococcus anginosus/fisiologia , Infecções Estreptocócicas/patologia
7.
EBioMedicine ; 100: 104952, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176203

RESUMO

BACKGROUND: Gut probiotic depletion is associated with non-alcoholic fatty liver disease-associated hepatocellular carcinoma (NAFLD-HCC). Here, we investigated the prophylactic potential of Lactobacillus acidophilus against NAFLD-HCC. METHODS: NAFLD-HCC conventional and germ-free mice were established by diethylnitrosamine (DEN) injection with feeding of high-fat high-cholesterol (HFHC) or choline-deficient high-fat (CDHF) diet. Orthotopic NAFLD-HCC allografts were established by intrahepatic injection of murine HCC cells with HFHC feeding. Metabolomic profiling was performed using liquid chromatography-mass spectrometry. Biological functions of L. acidophilus conditional medium (L.a CM) and metabolites were determined in NAFLD-HCC human cells and mouse organoids. FINDINGS: L. acidophilus supplementation suppressed NAFLD-HCC formation in HFHC-fed DEN-treated mice. This was confirmed in orthotopic allografts and germ-free tumourigenesis mice. L.a CM inhibited the growth of NAFLD-HCC human cells and mouse organoids. The protective function of L. acidophilus was attributed to its non-protein small molecules. By metabolomic profiling, valeric acid was the top enriched metabolite in L.a CM and its upregulation was verified in liver and portal vein of L. acidophilus-treated mice. The protective function of valeric acid was demonstrated in NAFLD-HCC human cells and mouse organoids. Valeric acid significantly suppressed NAFLD-HCC formation in HFHC-fed DEN-treated mice, accompanied by improved intestinal barrier integrity. This was confirmed in another NAFLD-HCC mouse model induced by CDHF diet and DEN. Mechanistically, valeric acid bound to hepatocytic surface receptor GPR41/43 to inhibit Rho-GTPase pathway, thereby ablating NAFLD-HCC. INTERPRETATION: L. acidophilus exhibits anti-tumourigenic effect in mice by secreting valeric acid. Probiotic supplementation is a potential prophylactic of NAFLD-HCC. FUNDING: Shown in Acknowledgments.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Ácidos Pentanoicos , Probióticos , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/etiologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/complicações , Lactobacillus acidophilus , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/etiologia , Fígado/metabolismo , Transformação Celular Neoplásica/metabolismo , Carcinogênese/patologia , Dieta Hiperlipídica , Colina/metabolismo , Probióticos/farmacologia , Probióticos/uso terapêutico , Camundongos Endogâmicos C57BL
8.
Aging Cell ; 23(2): e14035, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37970652

RESUMO

The role of circulatory proteomics in osteoporosis is unclear. Proteome-wide profiling holds the potential to offer mechanistic insights into osteoporosis. Serum proteome with 413 proteins was profiled by liquid chromatography-tandem mass spectrometry (LC-MS/MS) at baseline, and the 2nd, and 3rd follow-ups (7704 person-tests) in the prospective Chinese cohorts with 9.8 follow-up years: discovery cohort (n = 1785) and internal validation cohort (n = 1630). Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry (DXA) at follow-ups 1 through 3 at lumbar spine (LS) and femoral neck (FN). We used the Light Gradient Boosting Machine (LightGBM) to identify the osteoporosis (OP)-related proteomic features. The relationships between serum proteins and BMD in the two cohorts were estimated by linear mixed-effects model (LMM). Meta-analysis was then performed to explore the combined associations. We identified 53 proteins associated with osteoporosis using LightGBM, and a meta-analysis showed that 22 of these proteins illuminated a significant correlation with BMD (p < 0.05). The most common proteins among them were PHLD, SAMP, PEDF, HPTR, APOA1, SHBG, CO6, A2MG, CBPN, RAIN APOD, and THBG. The identified proteins were used to generate the biological age (BA) of bone. Each 1 SD-year increase in KDM-Proage was associated with higher risk of LS-OP (hazard ratio [HR], 1.25; 95% CI, 1.14-1.36, p = 4.96 × 10-06 ), and FN-OP (HR, 1.13; 95% CI, 1.02-1.23, p = 9.71 × 10-03 ). The findings uncovered that the apolipoproteins, zymoproteins, complements, and binding proteins presented new mechanistic insights into osteoporosis. Serum proteomics could be a crucial indicator for evaluating bone aging.


Assuntos
Osteoporose , Proteoma , Humanos , Estudos Prospectivos , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Osteoporose/genética , Envelhecimento
9.
Clin Nutr ; 42(12): 2328-2337, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37862819

RESUMO

BACKGROUND & AIMS: Polyunsaturated fatty acids (PUFAs) may play a vital role in maintaining skeletal muscle mass in the aged population. This study investigated the longitudinal relationship between the concentrations of erythrocyte membrane PUFAs and age-related changes in skeletal muscle mass over an average 6.5 years of follow-up in a Chinese middle-aged and older adult population. METHODS: A total of 1494 participants aged 57.4 ± 4.7 years were included in this study. Skeletal muscle mass was determined using dual-energy X-ray absorptiometry. Per year percent changes in the skeletal muscle index (Δ% SMI), appendicular skeletal muscle index (Δ% ASMI), and total body lean mass index (Δ% TBLMI) from baseline were calculated. Concentrations of total and individual cis-n-3 and cis-n-6 PUFAs of the erythrocyte membrane were determined using gas-liquid chromatography. RESULTS: Fully adjusted linear regression models showed that per unit increases in the concentrations of C18:2 n-6, C20:4 n-6, C22:4 n-6, and total n-6 PUFAs resulted in increases of 0.022%-0.155 % in the Δ% SMI (P for linearity: <0.001-0.006). Restricted cubic spline analysis revealed an inverted U-shaped relationship between the concentrations of C20:2 n-6, C22:5 n-3, C22:6 n-3, and total n-3 PUFAs and the Δ% SMI (P for non-linearity: <0.001-0.036). In addition, an inverted U-shaped curve was also detected for the relationships of the linoleic acid/α-linolenic acid ratio (P for non-linearity = 0.010) and n-6/n-3 PUFA ratio (P for non-linearity = 0.013) with the Δ% SMI, with the Δ% SMI peaking at respective ratios of 124.96 and 3.69. Similar associations were revealed by the Bayesian kernel machine regression model. No interaction effect was detected between the individual PUFAs for the Δ% SMI in the bivariate exposure-response analysis. Overall, similar results were observed for the Δ% ASMI and Δ% TBLMI. CONCLUSIONS: The associations between different individual PUFAs and age-related muscle loss in middle-aged and older adults may be different. Our results suggest that high concentrations of erythrocyte membrane n-6 PUFAs may be correlated with less skeletal muscle mass loss, whereas extremely high concentrations of n-3 PUFAs may be correlated with more muscle loss.


Assuntos
Membrana Eritrocítica , Ácidos Graxos Ômega-3 , Pessoa de Meia-Idade , Humanos , Idoso , Membrana Eritrocítica/química , Estudos Prospectivos , Teorema de Bayes , Ácidos Graxos Insaturados , Músculo Esquelético , Ácidos Graxos/análise
10.
Cell Rep Med ; 4(8): 101144, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37586322

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is an emerging risk factor of hepatocellular carcinoma (HCC). However, the mechanism and target therapy of NAFLD-HCC are still unclear. Here, we identify that the N6-methyladenosine (m6A) methyltransferase METTL3 promotes NAFLD-HCC. Hepatocyte-specific Mettl3 knockin exacerbated NAFLD-HCC formation, while Mettl3 knockout exerted the opposite effect in mice. Single-cell RNA sequencing revealed that METTL3 suppressed antitumor immune response by reducing granzyme B (GZMB+) and interferon gamma-positive (IFN-γ+) CD8+ T cell infiltration, thereby facilitating immune escape. Mechanistically, METTL3 mediates sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) mRNA m6A to promote its translation, leading to the activation of cholesterol biosynthesis. This enhanced secretion of cholesterol and cholesteryl esters that impair CD8+ T cell function in the tumor microenvironment. Targeting METTL3 by single-guide RNA, nanoparticle small interfering RNA (siRNA), or pharmacological inhibitor (STM2457) in combination with anti-programmed cell death protein 1 (PD-1) synergized to reinvigorate cytotoxic CD8+ T cells and mediate tumor regression. Together, METTL3 is a therapeutic target in NAFLD-HCC, especially in conjunction with immune checkpoint blockade (ICB) therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Metiltransferases , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Linfócitos T CD8-Positivos , Imunoterapia , Interferon gama/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Metiltransferases/genética , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/complicações , Microambiente Tumoral
11.
Nat Commun ; 14(1): 4677, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542037

RESUMO

KRAS is an important tumor intrinsic factor driving immune suppression in colorectal cancer (CRC). In this study, we demonstrate that SLC25A22 underlies mutant KRAS-induced immune suppression in CRC. In immunocompetent male mice and humanized male mice models, SLC25A22 knockout inhibits KRAS-mutant CRC tumor growth with reduced myeloid derived suppressor cells (MDSC) but increased CD8+ T-cells, implying the reversion of mutant KRAS-driven immunosuppression. Mechanistically, we find that SLC25A22 plays a central role in promoting asparagine, which binds and activates SRC phosphorylation. Asparagine-mediated SRC promotes ERK/ETS2 signaling, which drives CXCL1 transcription. Secreted CXCL1 functions as a chemoattractant for MDSC via CXCR2, leading to an immunosuppressive microenvironment. Targeting SLC25A22 or asparagine impairs KRAS-induced MDSC infiltration in CRC. Finally, we demonstrate that the targeting of SLC25A22 in combination with anti-PD1 therapy synergizes to inhibit MDSC and activate CD8+ T cells to suppress KRAS-mutant CRC growth in vivo. We thus identify a metabolic pathway that drives immunosuppression in KRAS-mutant CRC.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Colorretais , Masculino , Camundongos , Animais , Linhagem Celular Tumoral , Linfócitos T CD8-Positivos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Colorretais/terapia , Neoplasias Colorretais/tratamento farmacológico , Asparagina , Imunoterapia , Microambiente Tumoral
12.
Gastroenterology ; 165(2): 445-462, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37169182

RESUMO

BACKGROUND & AIMS: Immune checkpoint blockade therapy benefits only a small subset of patients with colorectal cancer (CRC), and identification of CRC-intrinsic events modulating immune checkpoint blockade efficacy is an unmet need. We found that AlkB homolog 5 (ALKBH5), an RNA N6-methyladenosine eraser, drives immunosuppression and is a molecular target to boost immune checkpoint blockade therapy in CRC. METHODS: Clinical significance of ALKBH5 was evaluated in human samples (n = 205). Function of ALKBH5 was investigated in allografts, CD34+ humanized mice, and Alkbh5 knockin mice. Immunity change was determined by means of flow cytometry, immunofluorescence, and functional investigation. Methylated RNA immunoprecipitation sequencing and RNA sequencing were used to identify ALKBH5 targets. Vesicle-like nanoparticle-encapsulated ALKBH5-small interfering RNA was constructed for targeting ALKBH5 in vivo. RESULTS: High ALKBH5 expression predicts poor prognosis in CRC. ALKBH5 induced myeloid-derived suppressor cell accumulation but reduced natural killer cells and cytotoxic CD8+ T cells to induce colorectal tumorigenesis in allografts, CD34+ humanized mice, and intestine-specific Alkbh5 knockin mice. Mechanistically, AXIN2, a Wnt suppressor, was identified as a target of ALKBH5. ALKBH5 binds and demethylates AXIN2 messenger RNA, which caused its dissociation from N6-methyladenosine reader IGF2BP1 and degradation, resulting in hyperactivated Wnt/ß-catenin. Subsequently, Wnt/ß-catenin targets, including Dickkopf-related protein 1 (DKK1) were induced by ALKBH5. ALKBH5-induced DKK1 recruited myeloid-derived suppressor cells to drive immunosuppression in CRC, and this effect was abolished by anti-DKK1 in vitro and in vivo. Finally, vesicle-like nanoparticle-encapsulated ALKBH5-small interfering RNA, or anti-DKK1 potentiated anti-PD1 treatment in suppressing CRC growth by enhancing antitumor immunity. CONCLUSIONS: This study identified an ALKBH5-N6-methyladenosine-AXIN2-Wnt-DKK1 axis in CRC, which drives immune suppression to facilitate tumorigenesis. Targeting of ALKBH5 is a promising strategy for sensitizing CRC to immunotherapy.


Assuntos
Neoplasias Colorretais , beta Catenina , Humanos , Camundongos , Animais , beta Catenina/genética , beta Catenina/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Carcinogênese/genética , Transformação Celular Neoplásica , RNA Interferente Pequeno/metabolismo , Imunoterapia , Terapia de Imunossupressão , Neoplasias Colorretais/terapia , Neoplasias Colorretais/tratamento farmacológico , Proteína Axina , Homólogo AlkB 5 da RNA Desmetilase/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo
13.
Clin Nutr ; 42(6): 887-898, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37086617

RESUMO

BACKGROUND & AIMS: Previous studies have suggested that circulating 25-hydroxyvitamin D (25 [OH]D, VD) and the gut microbiota-bile acid axis play crucial roles in metabolic health. Exploring the mediating role of the gut microbiota-bile acid axis would improve our understanding of the mechanisms underlying the effects of VD on human metabolic health. This study examined the association between plasma 25(OH)D and the prevalence/incidence of metabolic syndrome (MetS) and the mediating role of the gut microbiota-bile acid axis. METHODS: This prospective study included 3180 participants with plasma 25(OH)D data at baseline and 2966 participants with a 9-year follow-up. MetS was determined every three years. The gut microbiota was analyzed by 16S rRNA sequencing in 1752 participants, and targeted bile acid metabolites in feces were further determined in 974 participants using UPLC‒MS/MS at the middle of the study. Mediating roles of microbiota and bile acids in the VD-MetS associations were analyzed using mediation/path analyses adjusted for potential confounders. RESULTS: Among the 2966 participants who were followed-up, 1520, 193, 647, and 606 were MetS-free (normal), recovered, had incident MetS, and had persistent MetS, respectively. The multivariable-adjusted ORs (95% CIs) of MetS prevalence were 0.65 (0.50, 0.84) for baseline MetS and 0.46 (0.33, 0.65) for 9-year persistent MetS in quartile 4 (compared to quartile 1) of plasma 25(OH)D (median: 37.7 vs. 19.6, ng/ml). The corresponding HR (95% CI) of 9-year MetS incidence was 0.71 (0.56, 0.90) (all P-trend < 0.05). Higher VD concentrations were associated with greater α-diversity of the gut microbiota, which was inversely correlated with MetS risk. The groups classified by VD and MetS status had significantly different ß-diversity. Ruminiclostridium-6 and Christensenellaceae R-7 group were enriched in the high-VD group and were inversely associated with MetS. However, opposite associations were observed for Lachnoclostridium and Acidaminococcus. The overlapping differential microbial score (ODMS) developed from the four differential genera explained 12.2% of the VD-MetS associations (Pmediation = 0.015). Furthermore, the fecal bile acid score created from 11 differential bile acids related to ODMS and MetS mediated 34.2% of the association between ODMS and MetS (Pmediation = 0.029). Path analyses showed that the inverse association between plasma 25(OH)D and MetS could be mediated by the gut microbiota-bile acid axis. CONCLUSIONS: The findings suggest that the gut microbiota-bile acid axis partially mediates the beneficial association between plasma 25(OH)D and the risk of persistent MetS and incident MetS in the Chinese population.


Assuntos
Microbioma Gastrointestinal , Síndrome Metabólica , Adulto , Humanos , Estudos Prospectivos , Ácidos e Sais Biliares , RNA Ribossômico 16S , Cromatografia Líquida , População do Leste Asiático , Espectrometria de Massas em Tandem , Vitamina D , Vitaminas
14.
Radiol Med ; 128(2): 136-148, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36648615

RESUMO

This study aimed to systematically summarize the performance of the machine learning-based radiomics models in the prediction of microsatellite instability (MSI) in patients with colorectal cancer (CRC). It was conducted according to the preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies (PRISMA-DTA) guideline and was registered at the PROSPERO website with an identifier CRD42022295787. Systematic literature searching was conducted in databases of PubMed, Embase, Web of Science, and Cochrane Library up to November 10, 2022. Research which applied radiomics analysis on preoperative CT/MRI/PET-CT images for predicting the MSI status in CRC patients with no history of anti-tumor therapies was eligible. The radiomics quality score (RQS) and Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) were applied to evaluate the research quality (full score 100%). Twelve studies with 4,320 patients were included. All studies were retrospective, and only four had an external validation cohort. The median incidence of MSI was 19% (range 8-34%). The area under the receiver operator curve of the models ranged from 0.78 to 0.96 (median 0.83) in the external validation cohort. The median sensitivity was 0.76 (range 0.32-1.00), and the median specificity was 0.87 (range 0.69-1.00). The median RQS score was 38% (range 14-50%), and half of the studies showed high risk in patient selection as evaluated by QUADAS-2. In conclusion, while radiomics based on pretreatment imaging modalities had a high performance in the prediction of MSI status in CRC, so far it does not appear to be ready for clinical use due to insufficient methodological quality.


Assuntos
Neoplasias Colorretais , Instabilidade de Microssatélites , Humanos , Neoplasias Colorretais/patologia , Aprendizado de Máquina , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estudos Retrospectivos
15.
Gut ; 72(8): 1497-1509, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36717220

RESUMO

OBJECTIVE: The role of N6-methyladenosine (m6A) in tumour immune microenvironment (TIME) remains understudied. Here, we elucidate function and mechanism of YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) in colorectal cancer (CRC) TIME. DESIGN: Clinical significance of YTHDF1 was assessed in tissue microarrays (N=408) and TCGA (N=526) cohorts. YTHDF1 function was determined in syngeneic tumours, intestine-specific Ythdf1 knockin mice, and humanised mice. Single-cell RNA-seq (scRNA-seq) was employed to profile TIME. Methylated RNA immunoprecipitation sequencing (MeRIP-seq), RNA sequencing (RNA-seq) and ribosome sequencing (Ribo-seq) were used to identify YTHDF1 direct targets. Vesicle-like nanoparticles (VNPs)-encapsulated YTHDF1-siRNA was used for YTHDF1 silencing in vivo. RESULTS: YTHDF1 expression negatively correlated with interferon-γ gene signature in TCGA-CRC. Concordantly, YTHDF1 protein negatively correlated with CD8+ T-cell infiltration in independent tissue microarrays cohorts, implying its role in TIME. Genetic depletion of Ythdf1 augmented antitumour immunity in CT26 (MSS-CRC) and MC38 (MSI-H-CRC) syngeneic tumours, while Ythdf1 knockin promoted an immunosuppressive TIME facilitating CRC in azoxymethane-dextran sulphate-sodium or ApcMin/+ models. scRNA-seq identified reduction of myeloid-derived suppressor cells (MDSCs), concomitant with increased cytotoxic T cells in Ythdf1 knockout tumours. Integrated MeRIP-seq, RNA-seq and Ribo-seq revealed p65/Rela as a YTHDF1 target. YTHDF1 promoted p65 translation to upregulate CXCL1, which increased MDSC migration via CXCL1-CXCR2 axis. Increased MSDCs in turn antagonised functional CD8+ T cells in TIME. Importantly, targeting YTHDF1 by CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) or VNPs-siYTHDF1 boosted anti-PD1 efficacy in MSI-H CRC, and overcame anti-PD1 resistance in MSS CRC. CONCLUSION: YTHDF1 impairs antitumour immunity via an m6A-p65-CXCL1/CXCR2 axis to promote CRC and serves as a therapeutic target in immune checkpoint blockade therapy.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Camundongos , Animais , Linfócitos T CD8-Positivos , Neoplasias do Colo/patologia , Neoplasias Colorretais/patologia , Microambiente Tumoral
16.
Neuropsychiatr Dis Treat ; 18: 2737-2745, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36444217

RESUMO

Background: We aimed to investigate the association of post-thrombolytic D-dimer elevation with symptomatic intracranial hemorrhage (sICH) and functional outcome in AIS patients receiving intravenous thrombolysis. Methods: We retrospectively reviewed our database for patients with AIS who received intravenous thrombolysis between August 2018 and December 2021. ΔD-dimer was calculated as follow-up D-dimer minus baseline D-dimer. Poor functional outcome was defined as 3 months modified Rankin score (mRS) 3-6. sICH was defined as cerebral hemorrhagic transformation in combination with clinical deterioration of National Institutes of Health Stroke Scale (NIHSS) score ≥4 points at 24 hours. Binary logistic regression analysis was used to investigate the association of post-thrombolytic D-dimer parameters with sICH and poor functional outcome. The receiver operating characteristic (ROC) curve derived optimal cut-off of different D-dimer parameters was determined at the maximal Youden's Index. Results: A total of 325 patients were finally included. After controlling for clinical variables, follow-up D-dimer level (OR 1.230; 95% CI 1.119 to 1.351; P < 0.001) and ΔD-dimer (OR 1.347; 95% CI 1.165 to 1.559; P < 0.001) were independently associated with poor functional outcome. Additionally, follow-up D-dimer level (OR 1.095; 95% CI 1.009 to 1.188; P = 0.030) was independently related to sICH. The optimal cut-off value of follow-up D-dimer level for predicting sICH was 4185 µg/L (area under the curve 0.760; sensitivity 76.0%; specificity 81.3%); and the optimal cut-off value of follow-up D-dimer level and ΔD-dimer as a predictor for poor functional outcome was projected to be 3838 µg/L and 2190 µg/L, which yielded a sensitivity and a specificity of 62.3%, 84.5% and 73.8%, 85.2%, respectively. Conclusion: Elevated follow-up D-dimer levels are associated with sICH and poor functional outcome in AIS patients following intravenous rt-PA. Moreover, post-thrombolytic D-dimer elevation, measured by ΔD-dimer, was a better predictive biomarker for long-term outcome at 3 months.

17.
Transl Cancer Res ; 11(10): 3572-3583, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36388046

RESUMO

Background: This study aims to identify the core genes that influence the prognosis of colon cancer (CC) and analyze their relationships with clinical characteristics. Methods: The gene expression profiles were downloaded from The Cancer Genome Atlas (TCGA) database. Differentially expressed genes (DEGs) were identified. The top ten core genes were selected by bioinformatics tools and screened through the Oncomine database. The expression of core genes in CC tissues and cells was validated by immunohistochemistry, immunoblotting and quantitative real-time polymerase chain reaction. Spearman correlation was used to analyze the relationship between different parameters. Overall survival was assessed by the Kaplan-Meier method. The area under the curve (AUC) and the receiver operating curve (ROC) were applied to assess the accuracy of genes for predicting prognosis. Results: There were 1,665 DEGs that were identified from TCGA database. Bioinformatics analysis found that GNGT1, NMU, PPBP, AGT, and GNG4 were differentially expressed in CC tissue. Overexpression of NMU, PPBP, AGT, and GNG4 in CC was associated with shortened survival time (P<0.05). In the validation studies, the high expression levels of NMU, PPBP and GNG4 in CC cells and tissues were confirmed compared to the control groups (P<0.05) and were adverse prognostic biomarkers (P<0.01). The combination prognostic model of the three core genes predicted the 1-, 3-, and 5-year survival of CC with AUCs of 0.868, 0.635 and 0.770, respectively. Conclusions: High levels of NMU, PPBP, and GNG4 were associated with poor prognosis in CC. The combination prognostic model of these three genes could be a new option.

18.
Am J Clin Nutr ; 116(6): 1831-1841, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36095141

RESUMO

BACKGROUND: Many studies have investigated the effects of soy isoflavones on weight control, but few have focused on the role of equol, a gut-derived metabolite of daidzein with greater bioavailability than other soy isoflavones. OBJECTIVES: This study examined the association of equol production with obesity and explored the mediating roles of equol-related gut microbiota and microbial carnitine metabolites. METHODS: This 6.6-y prospective study included 2958 Chinese adults (2011 females and 947 males) aged 60.6 ± 6.0 y (mean ± SD) at baseline. Urinary equol and isoflavones were measured using HPLC-tandem MS. BMI, percentage fat mass (%FM), and serum triglycerides (TGs) were assessed every 3 y. Metagenomics sequencing and assessment of carnitine metabolites in feces were performed in a subsample of 897 participants. RESULTS: Urinary equol, but not daidzein and genistein, was independently and inversely associated with the obesity-related indicators of BMI, %FM, and a biomarker (TGs). Equol producers (EPs) had lower odds of adiposity conditions and a reduced risk of 6.6-y obesity progression than non-EPs among total participants. Gut microbial analyses indicated that EPs had higher microbiome species richness (P = 3.42 × 10-5) and significantly different ß-diversity of gut microbiota compared with the non-EP group (P = 0.001), with 20 of 162 species differing significantly. EPs (compared with non-EPs) had higher abundances of Alistipes senegalensis and Coprococcus catus but lower abundances of Ruminococcus gnavus (false discovery rate <0.05). Among the 7 determined fecal acylcarnitine metabolites, palmitoylcarnitine, oleylcarnitine 18:1, and stearylcarnitine were inversely associated with EPs but positively correlated with obesity conditions and progression. Path analyses indicated that the beneficial association between equol and obesity might be mediated by gut microbiota and decreased production of 3 acylcarnitines in feces. CONCLUSIONS: This study suggests a beneficial association between equol and obesity, mediated by the gut microbiome and acylcarnitines, in adults.This trial was registered at clinicaltrials.gov as NCT03179657.


Assuntos
Microbioma Gastrointestinal , Isoflavonas , Adulto , Feminino , Humanos , Masculino , Adiposidade , Carnitina , Equol/urina , Isoflavonas/farmacologia , Obesidade , Estudos Prospectivos , Pessoa de Meia-Idade
19.
Cancers (Basel) ; 14(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35884552

RESUMO

N6-methyladenosine (m6A) is the most abundant internal modification in eukaryotic cell mRNA, and this modification plays a key role in regulating mRNA translation, splicing, and stability. Emerging evidence implicates aberrant m6A as a crucial player in the occurrence and development of diseases, especially GI cancers. Among m6A regulators, YTHDF1 is the most abundant m6A reader that functionally connects m6A-modified mRNA to its eventual fate, mostly notably protein translation. Here, we summarized the function, molecular mechanisms, and clinical implications of YTHDF1 in GI cancers. YTHDF1 is largely upregulated in multiple GI cancer and its high expression predicts poor patient survival. In vitro and in vivo experimental evidence largely supports the role of YTDHF1 in promoting cancer initiation, progression, and metastasis, which suggests the oncogenic function of YTHDF1 in GI cancers. Besides, YTHDF1 overexpression is associated with changes in the tumor microenvironment that are favorable to tumorigenesis. Mechanistically, YTHDF1 regulates the expression of target genes by promoting translation, thereby participating in cancer-related signaling pathways. Targeting YTHDF1 holds therapeutic potential, as the overexpression of YTHDF1 is associated with tumor resistance to chemotherapy and immunotherapy. In summary, YTHDF1-mediated regulation of m6A modified mRNA is an actionable target and a prognostic factor for GI cancers.

20.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34638638

RESUMO

Many vector-borne viruses possess the ability to manipulate vector behaviors to facilitate their transmission. There is evidence that the mechanism of this phenomenon has been described in part as direct manipulation through regulating vector chemosensation. Rice stripe virus (RSV) is transmitted by the small brown planthopper, Laodelphax striatellus (Fallen), in a persistent, circulative-propagative manner. The effect of RSV infection on the olfactory system of L. striatellus has not been fully elucidated. Here, we employed transcriptomic sequencing to analyze gene expression profiles in antennae, legs and heads (without antennae) from L. striatellus females and males with/without RSV infection. Comparisons of the differentially expressed genes (DEGs) among antennae, legs and heads indicated that tissue-specific changes in the gene expression profile were greater than sex-specific changes. A total of 17 olfactory related genes were differentially expressed in viruliferous antennae as compared to nonviruliferous antennae, including LstrOBP4/9, LstrCSP1/2/5, LstrGR28a/43a/43a-1, LstrIR1/2/NMDA1, LstrOR67/85e/56a/94 and LstrSNMP2/2-2. There are 23 olfactory related DEGs between viruliferous and nonviruliferous legs, including LstrOBP2/3/4/12/13, LstrCSP13/5/10, LstrIR1/2/Delta2/Delta2-1/kainate2/NMDA2, LstrOR12/21/31/68 and LstrORco. A low number of olfactory related DEGs were found between viruliferous and nonviruliferous heads, including LstrCSP1, LstrOBP2, LstrOR67 and LstrSNMP2-2. Among these DEGs, the expression patterns of LstrOBP2, LstrOBP3 and LstrOBP9 in three tissues was validated by quantitative real-time PCR. The demonstration of overall changes in the genes in L. striatellus' chemoreception organs in response to RSV infection would not only improve our understanding of the effect of RSV on the olfactory related genes of insect vectors but also provide insights into developing approaches to control the plant virus transmission and spread as well as pest management in the future.


Assuntos
Células Quimiorreceptoras/fisiologia , Hemípteros/genética , Hemípteros/virologia , Oryza/genética , Oryza/virologia , Tenuivirus/genética , Transcriptoma/genética , Animais , Perfilação da Expressão Gênica/métodos , Proteínas de Insetos/genética , Insetos Vetores/genética , Insetos Vetores/virologia , Doenças das Plantas/virologia , Vírus de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA