Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36500406

RESUMO

Due to a high content of sesquiterpenes, Carpesium abrotanoides has been investigated to fully explore its health-promoting properties. Therefore, this work aimed to assess, for the first time, the anti-influenza A virus H1N1 potential of sesquiterpene-targeted fractions of the herb derived from C. abrotanoides. Five compounds, including four sesquiterpenes and one aldehyde, were isolated and identified from the sesquiterpene-rich extracts of C. abrotanoides (SECA), and the contents of three main sesquiterpenes in the SECA were determined. Furthermore, SECA showed a significant protective effect in the MDCK cells infected with influenza A virus (H1N1) in three different conditions: premixed administration, prophylactic administration, and therapeutic administration. SECA can significantly decrease the mRNA expressions of TLR4, MyD88, NF-κB, TNF-α, and IL-6, as well as the protein expressions of TLR4, MyD88, and NF-κB. This result suggests that SECA can resist the influenza A virus H1N1 through the TLR4/MyD88/NF-κB signal pathway.


Assuntos
Asteraceae , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Sesquiterpenos , NF-kappa B , Sesquiterpenos/farmacologia , Fator 88 de Diferenciação Mieloide
2.
Zhongguo Zhong Yao Za Zhi ; 45(1): 37-51, 2020 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-32237409

RESUMO

The genus Carpesium plants contain many kinds of sesquiterpenes. Up to now, more than 201 sesquiterpene compounds have been isolated and identified, including 86 germacranolides, 30 eudesmanolides, 29 guaianolides, 23 sesquiterpene dimers, 9 pseudoguaianes, 9 carabranolides, 7 xanthanolides, 6 sesquiterpenes without lactone, 1 eremophilane and 1 tricyclo dodecane sesquiterpene. The reported sesquiterpenes possess a series of pharmacological properties, such as anti-tumor, anti-inflammatory, antibacterial, antiparasitic, insecticidal, and antiviral activities. This paper summarizes the 201 chemical structures and biological activities of sesquiterpenes in genus Carpesium, and provides the scientific basis for the further development and utilization.


Assuntos
Asteraceae/química , Sesquiterpenos/farmacologia , Antibacterianos , Anti-Inflamatórios , Lactonas , Estrutura Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Sesquiterpenos/química
3.
Molecules ; 25(6)2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32213805

RESUMO

Avocado oil is prized for its high nutritional value due to the substantial amounts of triglycerides (TGs) and unsaturated fatty acids (FAs) present. While avocado oil is traditionally extracted from mature fruit flesh, alternative sources such as avocado seed oil have recently increased in popularity. Unfortunately, sufficient evidence is not available to support the claimed health benefit and safe use of such oils. To address potential quality issues and identify possible adulteration, authenticated avocado oils extracted from the fruit peel, pulp and seed by supercritical fluid extraction (SFE), as well as commercial avocado pulp and seed oils sold in US market were analyzed for TGs and FAs in the present study. Characterization and quantification of TGs were conducted using UHPLC/ESI-MS. Thirteen TGs containing saturated and unsaturated fatty acids in avocado oils were unambiguously identified. Compared to traditional analytical methods, which are based only on the relative areas of chromatographic peaks neglecting the differences in the relative response of individual TG, our method improved the quantification of TGs by using the reference standards whenever possible or the reference standards with the same equivalent carbon number (ECN). To verify the precision and accuracy of the UHPLC/ESI-MS method, the hydrolysis and transesterification products of avocado oil were analyzed for fatty acid methyl esters using a GC/MS method. The concentrations of individual FA were calculated, and the results agreed with the UHPLC/ESI-MS method. Although chemical profiles of avocado oils from pulp and peel are very similar, a significant difference was observed for the seed oil. Principal component analysis (PCA) based on TG and FA compositional data allowed correct identification of individual avocado oil and detection of possible adulteration.


Assuntos
Persea/química , Óleos de Plantas/química , Cromatografia Líquida de Alta Pressão , Ácidos Graxos Insaturados/análise , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas por Ionização por Electrospray , Triglicerídeos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA