Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Cell Death Discov ; 10(1): 351, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107280

RESUMO

Radiotherapy (RT) plays a critical role in the management of rhabdomyosarcoma (RMS), the prevalent soft tissue sarcoma in childhood. The high risk PAX3-FOXO1 fusion-positive subtype (FP-RMS) is often resistant to RT. We have recently demonstrated that inhibition of class-I histone deacetylases (HDACs) radiosensitizes FP-RMS both in vitro and in vivo. However, HDAC inhibitors exhibited limited success on solid tumors in human clinical trials, at least in part due to the presence of off-target effects. Hence, identifying specific HDAC isoforms that can be targeted to radiosensitize FP-RMS is imperative. We, here, found that only HDAC3 silencing, among all class-I HDACs screened by siRNA, radiosensitizes FP-RMS cells by inhibiting colony formation. Thus, we dissected the effects of HDAC3 depletion using CRISPR/Cas9-dependent HDAC3 knock-out (KO) in FP-RMS cells, which resulted in Endoplasmatic Reticulum Stress activation, ERK inactivation, PARP1- and caspase-dependent apoptosis and reduced stemness when combined with irradiation compared to single treatments. HDAC3 loss-of-function increased DNA damage in irradiated cells augmenting H2AX phosphorylation and DNA double-strand breaks (DSBs) and counteracting irradiation-dependent activation of ATM and DNA-Pkcs as well as Rad51 protein induction. Moreover, HDAC3 depletion hampers FP-RMS tumor growth in vivo and maximally inhibits the growth of irradiated tumors compared to single approaches. We, then, developed a new HDAC3 inhibitor, MC4448, which showed specific cell anti-tumor effects and mirrors the radiosensitizing effects of HDAC3 depletion in vitro synergizing with ERKs inhibition. Overall, our findings dissect the pro-survival role of HDAC3 in FP-RMS and suggest HDAC3 genetic or pharmacologic inhibition as a new promising strategy to overcome radioresistance in this tumor.

2.
Mol Genet Genomic Med ; 12(4): e2423, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622850

RESUMO

BACKGROUND: Inflammatory myofibroblastic tumors (IMTs) are rare mesenchymal soft tissue sarcomas that often present diagnostic challenges due to their wide and varied morphology. A subset of IMTs have fusions involving ALK or ROS1. The role of next-generation sequencing (NGS) for classification of unselected sarcomas remains controversial. METHODS AND RESULTS: We report a case of a metastatic sarcoma in a 34-year-old female originally diagnosed as an unclassified spindle cell sarcoma with myofibroblastic differentiation and later reclassified as IMT after NGS revealed a TFG-ROS1 rearrangement. Histologically, the neoplasm had spindle cell morphology with a lobulated to focally infiltrative growth pattern with scant inflammatory cell infiltrate. Immunohistochemistry demonstrated focal desmin and variable smooth muscle actin staining but was negative for SOX10, S100, and CD34. Fluorescence in situ hybridization was negative for USP6 or ALK gene rearrangements. NGS revealed a TFG-ROS1 rearrangement and the patient was treated with crizotinib with clinical benefit. CONCLUSIONS: We discuss the role of NGS as well as its potential benefit in patients with unresectable, ALK-negative metastatic disease. Considering this case and previous literature, we support the use of NGS for patients requiring systemic treatment.


Assuntos
Proteínas Tirosina Quinases , Sarcoma , Feminino , Humanos , Adulto , Proteínas Tirosina Quinases/genética , Quinase do Linfoma Anaplásico/genética , Hibridização in Situ Fluorescente , Proteínas Proto-Oncogênicas/genética , Sarcoma/tratamento farmacológico , Sarcoma/genética , Sarcoma/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Ubiquitina Tiolesterase/genética , Proteínas de Transporte Vesicular/genética
3.
Oral Surg Oral Med Oral Pathol Oral Radiol ; 137(6): e131-e142, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38616481

RESUMO

The calcified chondroid mesenchymal neoplasm (CCMN) represents a recently recognized tumor type with only 50 well-documented cases in the English-language literature. Herein we report an additional case of CCMN presenting as a large mass in the temporomandibular joint region of a 41-year-old female. A review of previously reported cases and the current case of CCMN shows the following features: 1) average age 52 years (range 14-87 years) and an approximately even sex distribution; 2) most frequently involved sites: distal extremities (including foot, hand, wrist, forearm) (n=41) and temporomandibular joint/temporal/parotid region (n=9); 3) multilobular soft tissue tumor with chondroid to cartilaginous matrix, often grungy or lace-like calcifications, and variable cytologic atypia; 4) frequently detected FN1 rearrangement (n=15), including FN1 fusion with FGFR2 (n=7) or other receptor tyrosine kinases; 5) 2 reported local recurrences (after incomplete excision); 6) no reports of malignant biologic behavior.


Assuntos
Calcinose , Neoplasias , Adulto , Feminino , Humanos , Calcinose/patologia , Calcinose/diagnóstico por imagem , Calcinose/cirurgia , Diagnóstico Diferencial , Transtornos da Articulação Temporomandibular/patologia , Transtornos da Articulação Temporomandibular/diagnóstico por imagem , Transtornos da Articulação Temporomandibular/cirurgia , Neoplasias/diagnóstico , Neoplasias/patologia , Neoplasias/terapia
4.
bioRxiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38645184

RESUMO

Regulatory T cells (Tregs) have potential as a cell-based therapy to prevent or treat transplant rejection and autoimmunity. Using an HLA-A2-specific chimeric antigen receptor (A2-CAR), we previously showed that adoptive transfer of A2-CAR Tregs limited anti-HLA-A2 alloimmunity. However, it was unknown if A2-CAR Tregs could also limit immunity to autoantigens. Using a model of HLA-A2+ islet transplantation into immunodeficient non-obese diabetic mice, we investigated if A2-CAR Tregs could control diabetes induced by islet-autoreactive (BDC2.5) T cells. In mice transplanted with HLA-A2+ islets, A2-CAR Tregs reduced BDC2.5 T cell engraftment, proliferation and cytokine production, and protected mice from diabetes. Tolerance to islets was systemic, including protection of the HLA-A2negative endogenous pancreas. In tolerant mice, a significant proportion of BDC2.5 T cells gained FOXP3 expression suggesting that long-term tolerance is maintained by de novo Treg generation. Thus, A2-CAR Tregs mediate linked suppression and infectious tolerance and have potential therapeutic use to simultaneously control both allo- and autoimmunity in islet transplantation.

5.
Surg Pathol Clin ; 17(1): 77-82, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278609

RESUMO

Calcified chondroid mesenchymal neoplasms (CCMN) represent a morphologic spectrum of related tumors. Historically, chondroid matrix or chondroblastoma-like features have been described in soft tissue chondroma, tenosynovial giant cell tumors (especially of the temporomandibular joint (TMJ) region), and in a subset of tophaceous pseudogout. Recently, these tumors have been found to share FN1-receptor tyrosine kinase (RTK) fusions. This review discusses the clinical, morphologic, immunohistochemical, and molecular genetic features of CCMN. The distinction from morphologic mimics is also discussed.


Assuntos
Condrocalcinose , Neoplasias de Tecidos Moles , Humanos , Condrocalcinose/patologia , Articulação Temporomandibular/patologia , Neoplasias de Tecidos Moles/diagnóstico , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/patologia
6.
Elife ; 122023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37266578

RESUMO

In embryonal rhabdomyosarcoma (ERMS) and generally in sarcomas, the role of wild-type and loss- or gain-of-function TP53 mutations remains largely undefined. Eliminating mutant or restoring wild-type p53 is challenging; nevertheless, understanding p53 variant effects on tumorigenesis remains central to realizing better treatment outcomes. In ERMS, >70% of patients retain wild-type TP53, yet mutations when present are associated with worse prognosis. Employing a kRASG12D-driven ERMS tumor model and tp53 null (tp53-/-) zebrafish, we define wild-type and patient-specific TP53 mutant effects on tumorigenesis. We demonstrate that tp53 is a major suppressor of tumorigenesis, where tp53 loss expands tumor initiation from <35% to >97% of animals. Characterizing three patient-specific alleles reveals that TP53C176F partially retains wild-type p53 apoptotic activity that can be exploited, whereas TP53P153Δ and TP53Y220C encode two structurally related proteins with gain-of-function effects that predispose to head musculature ERMS. TP53P153Δ unexpectedly also predisposes to hedgehog-expressing medulloblastomas in the kRASG12D-driven ERMS-model.


Assuntos
Neoplasias Cerebelares , Rabdomiossarcoma Embrionário , Animais , Carcinogênese , Mutação , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Rabdomiossarcoma Embrionário/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
7.
Cancers (Basel) ; 15(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37345125

RESUMO

Rhabdomyosarcoma (RMS) is a pediatric soft tissue sarcoma that causes significant devastation, with no effective therapy for relapsed disease. The mechanisms behind treatment failures are poorly understood. Our study showed that treatment of RMS cells with vincristine led to an increase in CD133-positive stem-like resistant cells. Single cell RNAseq analysis revealed that MYC and YBX1 were among the top-scoring transcription factors in CD133-high expressing cells. Targeting MYC and YBX1 using CRISPR/Cas9 reduced stem-like characteristics and viability of the vincristine-resistant cells. MYC and YBX1 showed mutual regulation, with MYC binding to the YBX1 promoter and YBX1 binding to MYC mRNA. The MYC inhibitor MYC361i synergized with vincristine to reduce tumor growth and stem-like cells in a zebrafish model of RMS. MYC and YBX expression showed a positive correlation in RMS patients, and high MYC expression correlated with poor survival. Targeting the MYC-YBX1 axis holds promise for improving survival in RMS patients.

8.
PLoS One ; 18(4): e0284026, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37027358

RESUMO

Recently, autophagy has been implicated as a host defense mechanism against intracellular pathogens. On the other hand, certain intracellular pathogens such as Leishmania can manipulate the host's autophagy to promote their survival. Our recent findings regarding the regulation of autophagy by Leishmania donovani indicate that this pathogen induces non-classical autophagy in infected macrophages, independent of regulation by the mammalian target of rapamycin complex 1. This suggests the fine-tuning of autophagy to optimally promote parasite survival, possibly by the sequestration or modulation of specific autophagosome-associated proteins. To investigate how Leishmania potentially manipulates the composition of host-cell autophagosomes, we undertook a quantitative proteomic study of the human monocytic cell line THP-1 following infection with L. donovani. We used stable isotope labeling by amino acid in cell culture and liquid chromatography-tandem mass spectrometry to compare expression profiles between autophagosomes isolated from THP-1 cells infected with L. donovani or treated with known autophagy inducers. Selected proteomic results were validated by Western blotting. In this study, we showed that L. donovani modulates the composition of macrophage autophagosomes during infection when compared to autophagosomes induced by either rapamycin (selective autophagy) or starvation (non-selective autophagy). Among 1787 proteins detected in Leishmania-induced autophagosomes, 146 were significantly modulated compared to the proteome of rapamycin-induced autophagosomes, while 57 were significantly modulated compared to starvation-induced autophagosomes. Strikingly, 23 Leishmania proteins were also detected in the proteome of Leishmania-induced autophagosomes. Together, our data provide the first comprehensive insight into the proteome dynamics of host autophagosomes in response to Leishmania infection and demonstrate the complex relations between the host and pathogen at the molecular level. A comprehensive analysis of the Leishmania-induced autophagosome proteome will be instrumental in the advancement of understanding leishmaniasis.


Assuntos
Leishmania donovani , Leishmaniose , Humanos , Autofagossomos , Proteoma/metabolismo , Proteômica/métodos , Macrófagos/metabolismo , Leishmania donovani/fisiologia , Sirolimo
10.
Int J Cancer ; 153(1): 183-196, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36912284

RESUMO

Fanconi anemia (FA) is a heritable malformation, bone marrow failure and cancer predisposition syndrome that confers an exceptionally high risk of squamous carcinomas. These carcinomas originate in epithelia lining the mouth, proximal esophagus, vulva and anus: their origins are not understood, and no effective ways have been identified to prevent or delay their appearance. Many FA-associated carcinomas are also therapeutically challenging: they may be multi-focal and stage-advanced at diagnosis, and most individuals with FA cannot tolerate standard-of-care systemic therapies such as DNA cross-linking drugs or ionizing radiation due to constitutional DNA damage hypersensitivity. We developed the Fanconi Anemia Cancer Cell Line Resource (FA-CCLR) to foster new work on the origins, treatment and prevention of FA-associated carcinomas. The FA-CCLR consists of Fanconi-isogenic head and neck squamous cell carcinoma (HNSCC) cell line pairs generated from five individuals with FA-associated HNSCC, and five individuals with sporadic HNSCC. Sporadic, isogenic HNSCC cell line pairs were generated in parallel with FA patient-derived isogenic cell line pairs to provide comparable experimental material to use to identify cell and molecular phenotypes driven by germline or somatic loss of Fanconi pathway function, and the subset of these FA-dependent phenotypes that can be modified, complemented or suppressed. All 10 FANC-isogenic cell line pairs are available to academic, non-profit and industry investigators via the "Fanconi Anemia Research Materials" Resource and Repository at Oregon Health & Sciences University, Portland OR.


Assuntos
Carcinoma de Células Escamosas , Anemia de Fanconi , Neoplasias de Cabeça e Pescoço , Feminino , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Anemia de Fanconi/genética , Anemia de Fanconi/complicações , Anemia de Fanconi/patologia , Ciência Translacional Biomédica , Neoplasias de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral
11.
Genes Chromosomes Cancer ; 62(3): 161-166, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36331420

RESUMO

We describe a case of a myoepithelial carcinoma of the superficial parotid gland in a 46-year-old male harboring a novel CTCF::NCOA2 gene fusion. To our knowledge, this novel gene fusion has not been described previously in myoepithelial carcinoma. A 46-year-old male patient presented with a mass involving the superficial left parotid gland with extension into the external auditory canal (EAC) and erosion of the conchal cartilage. Histologically, the neoplasm was composed of uniform spindled, epithelioid/ovoid cells arranged in cords and nests within hyalinized to myxoid stroma. On immunohistochemistry (IHC), the tumor cells demonstrated patchy and variable staining for low molecular weight cytokeratin (CAM5.2), pan-cytokeratin (OSCAR), and S-100. Overall, the morphological and immunohistochemical attributes supported a locally aggressive tumor of myoepithelial differentiation consistent with myoepithelial carcinoma. Molecular analysis using a custom 115-gene gene panel by targeted RNA sequencing, showed an in-frame CTCF::NCOA2 fusion. In addition to reporting this novel fusion in myoepithelial carcinoma, we also discuss relevant differential diagnosis, and provide a brief review of NCOA2 gene function in both normal and neoplastic contexts.


Assuntos
Carcinoma , Mioepitelioma , Neoplasias Parotídeas , Masculino , Humanos , Pessoa de Meia-Idade , Glândula Parótida/patologia , Neoplasias Parotídeas/genética , Neoplasias Parotídeas/química , Neoplasias Parotídeas/diagnóstico , Carcinoma/genética , Mioepitelioma/genética , Mioepitelioma/patologia , Queratinas/genética , Coativador 2 de Receptor Nuclear/genética
12.
Appl Immunohistochem Mol Morphol ; 30(10): 662-667, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36227098

RESUMO

Desmoid fibromatosis (DF) is a locally aggressive soft tissue neoplasm with frequent recurrences. DF is characterized by alterations in the Wnt/ß-catenin pathway, with the majority showing sporadic mutations in CTNNB1 , whereas others have germline mutations in APC . Immunohistochemical staining for ß-catenin is often difficult to interpret and can be negative in up to 30% of cases. Prior studies have shown that some DFs lacking nuclear expression of ß-catenin may carry activating CTNNB1 mutations. Droplet digital polymerase chain reaction (ddPCR) has been used effectively in detecting mutations in formalin-fixed, paraffin-embedded (FFPE) samples of various cancer types. In this study, we assess the diagnostic utility of ddPCR to detect CTNNB1 mutations in DF with ß-catenin expression on immunohistochemistry (IHC), as well as in diagnostically challenging cases. Of the 28 DFs with nuclear ß-catenin expression by IHC, 24 cases showed a CTNNB1 mutation by ddPCR using primers against the most common point mutations in CTNNB1 . The most frequent mutation was T41A (n=14; 50%), followed by S45F (n=8; 33%) and S45P (n=3;12%). We identified 8 additional (myo)fibroblastic lesions of uncertain classification, which were negative for nuclear ß-catenin expression by IHC. We detected CTNNB1 mutations in 3 unknown lesions, including S45F (n=2) and S45P (n=1). ddPCR is a sensitive, rapid and cost-efficient methodology to detect common CTNNB1 mutations in DF, especially in diagnostically challenging cases.


Assuntos
Fibromatose Agressiva , beta Catenina , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Fibromatose Agressiva/diagnóstico , Fibromatose Agressiva/genética , Fibromatose Agressiva/patologia , Mutação , Reação em Cadeia da Polimerase , Tecnologia
13.
Hum Pathol ; 129: 90-97, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36067829

RESUMO

Malignant peripheral nerve sheath tumors ( MPNSTs) are aggressive tumors with poor prognosis that do not typically respond well to standard chemotherapy. Recently, point mutations involving BRAF V600E have been demonstrated in a subset of MPNST, offering the possibility of targeted treatment. However, the reported prevalence of these alterations is variable. Mutations involving NRAS, which is also involved in the MAPK/ERK pathway and amenable to targeted inhibitors, have not been well characterized in MPNST. In this study, we validated droplet digital polymerase chain reaction for the detection of BRAF V600E and NRAS Q61 mutations and evaluate the prevalence of BRAF V600E and NRAS Q61 mutations in 79 cases of MPNST, including 45 sporadic, 27 NF-1 associated, and 7 radiation-associated tumors. We detected actionable BRAF or NRAS mutations in 3 of 44 sporadic MPNSTs (6.8%), including 2 BRAF V600 and 1 NRAS Q61 mutations, as well as 1 NRAS Q61 mutation in a tumor that was ultimately considered to represent melanoma. These 3 cases with positive mutations were exclusively in sporadic, high-grade MPNST (FNCLCC grade 3 of 3), with a prevalence of 11.5% in this group (3.8% NRAS Q61 mutations and 7.7% BRAF V600 mutations). None of the tumors associated with NF-1 or prior radiation had detectable mutations in the genes tested. Overall, the prevalence of these alterations offers the possibility of targeted therapy in this aggressive type of sarcoma and suggests the potential benefit of routine clinical testing.


Assuntos
Neurofibrossarcoma , Humanos , Prevalência , Proteínas Proto-Oncogênicas B-raf/genética , Reação em Cadeia da Polimerase , Mutação , Proteínas de Membrana/genética , GTP Fosfo-Hidrolases/genética
14.
Sci Transl Med ; 14(653): eabq2096, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35857643

RESUMO

Chimeric transcription factors drive lineage-specific oncogenesis but are notoriously difficult to target. Alveolar rhabdomyosarcoma (RMS) is an aggressive childhood soft tissue sarcoma transformed by the pathognomonic Paired Box 3-Forkhead Box O1 (PAX3-FOXO1) fusion protein, which governs a core regulatory circuitry transcription factor network. Here, we show that the histone lysine demethylase 4B (KDM4B) is a therapeutic vulnerability for PAX3-FOXO1+ RMS. Genetic and pharmacologic inhibition of KDM4B substantially delayed tumor growth. Suppression of KDM4 proteins inhibited the expression of core oncogenic transcription factors and caused epigenetic alterations of PAX3-FOXO1-governed superenhancers. Combining KDM4 inhibition with cytotoxic chemotherapy led to tumor regression in preclinical PAX3-FOXO1+ RMS subcutaneous xenograft models. In summary, we identified a targetable mechanism required for maintenance of the PAX3-FOXO1-related transcription factor network, which may translate to a therapeutic approach for fusion-positive RMS.


Assuntos
Rabdomiossarcoma Alveolar , Rabdomiossarcoma , Carcinogênese/genética , Linhagem Celular Tumoral , Criança , Proteína Forkhead Box O1/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Fator de Transcrição PAX3/genética , Fator de Transcrição PAX3/metabolismo , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Fatores de Transcrição Box Pareados/uso terapêutico , Rabdomiossarcoma/genética , Rabdomiossarcoma Alveolar/genética , Rabdomiossarcoma Alveolar/metabolismo , Rabdomiossarcoma Alveolar/patologia
15.
Cancers (Basel) ; 14(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35267598

RESUMO

Patients with metastatic soft tissue sarcoma (STS) have a poor prognosis and few available systemic treatment options. Trabectedin is currently being investigated as a potential adjunct to immunotherapy as it has been previously shown to kill tumor-associated macrophages. In this retrospective study, we sought to identify biomarkers that would be relevant to trials combining trabectedin with immunotherapy. We performed a single-center retrospective study of sarcoma patients treated with trabectedin with long-term follow-up. Multiplex gene expression analysis using the NanoString platform was assessed, and an exploratory analysis using the lasso-penalized Cox regression and kernel association test for survival (MiRKAT-S) methods investigated tumor-associated immune cells and correlated their gene signatures to patient survival. In total, 147 sarcoma patients treated with trabectedin were analyzed, with a mean follow-up time of 5 years. Patients with fewer prior chemotherapy regimens were more likely to stay on trabectedin longer (pairwise correlation = -0.17, p = 0.04). At 5 years, increased PD-L1 expression corresponded to worse outcomes (HR = 1.87, p = 0.04, q = 0.199). Additionally, six immunologic gene signatures were associated with up to 7-year survival by MiRKAT-S, notably myeloid-derived suppressor cells (p = 0.023, q = 0.058) and M2 macrophages (p = 0.03, q = 0.058). We found that the number of chemotherapy regimens prior to trabectedin negatively correlated with the number of trabectedin cycles received, suggesting that patients may benefit from receiving trabectedin earlier in their therapy course. The correlation of trabectedin outcomes with immune cell infiltrates supports the hypothesis that trabectedin may function as an immune modulator and supports ongoing efforts to study trabectedin in combination with immunotherapy. Furthermore, tumors with an immunosuppressive microenvironment characterized by macrophage infiltration and high PD-L1 expression were less likely to benefit from trabectedin, which could guide clinicians in future treatment decisions.

16.
Clin Cancer Res ; 28(8): 1701-1711, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35115306

RESUMO

PURPOSE: To characterize changes in the soft-tissue sarcoma (STS) tumor immune microenvironment induced by standard neoadjuvant therapy with the goal of informing neoadjuvant immunotherapy trial design. EXPERIMENTAL DESIGN: Paired pre- and postneoadjuvant therapy specimens were retrospectively identified for 32 patients with STSs and analyzed by three modalities: multiplexed IHC, NanoString, and RNA sequencing with ImmunoPrism analysis. RESULTS: All 32 patients, representing a variety of STS histologic subtypes, received neoadjuvant radiotherapy and 21 (66%) received chemotherapy prior to radiotherapy. The most prevalent immune cells in the tumor before neoadjuvant therapy were myeloid cells (45% of all immune cells) and B cells (37%), with T (13%) and natural killer (NK) cells (5%) also present. Neoadjuvant therapy significantly increased the total immune cells infiltrating the tumors across all histologic subtypes for patients receiving neoadjuvant radiotherapy with or without chemotherapy. An increase in the percentage of monocytes and macrophages, particularly M2 macrophages, B cells, and CD4+ T cells was observed postneoadjuvant therapy. Upregulation of genes and cytokines associated with antigen presentation was also observed, and a favorable pathologic response (≥90% necrosis postneoadjuvant therapy) was associated with an increase in monocytic infiltrate. Upregulation of the T-cell checkpoint TIM3 and downregulation of OX40 were observed posttreatment. CONCLUSIONS: Standard neoadjuvant therapy induces both immunostimulatory and immunosuppressive effects within a complex sarcoma microenvironment dominated by myeloid and B cells. This work informs ongoing efforts to incorporate immune checkpoint inhibitors and novel immunotherapies into the neoadjuvant setting for STSs.


Assuntos
Sarcoma , Neoplasias de Tecidos Moles , Humanos , Imunidade , Terapia Neoadjuvante , Prognóstico , Estudos Retrospectivos , Sarcoma/tratamento farmacológico , Sarcoma/terapia , Microambiente Tumoral
17.
Anal Chem ; 94(9): 3791-3799, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35188370

RESUMO

Bone is difficult to image using traditional histopathological methods, leading to challenges in intraoperative pathological evaluation that is critical in guiding surgical treatment, particularly in orthopedic oncology. In this study, we demonstrate that a multimodal quantitative imaging approach that combines stimulated Raman scattering (SRS) microscopy, two-photon fluorescence (TPF) microscopy, and second-harmonic generation (SHG) microscopy can provide useful diagnostic information regarding intact bone tissue fragments from surgical excision or biopsy specimens. We imaged bone samples from 17 patient cases and performed quantitative chemical and morphological analyses of both mineral and organic components of bone. Our main findings show that carbonate content combined with morphometric analysis of bone organic matrix can separate several major classes of bone cancer-associated diagnostic categories with an average accuracy of 92%. This proof-of-principle study demonstrates that quantitative multimodal imaging and machine learning-based analysis of bony tissue can provide crucial diagnostic information for guiding clinical decisions in orthopedic oncology. Moreover, the general methodology of morphological and chemical imaging combined with machine learning can be readily extended to other tissue types for tissue diagnosis in intraoperative and other clinical settings.


Assuntos
Microscopia , Análise Espectral Raman , Osso e Ossos/diagnóstico por imagem , Humanos , Imagem Multimodal , Fótons , Análise Espectral Raman/métodos
18.
Genes Chromosomes Cancer ; 61(3): 138-147, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34773670

RESUMO

Pleomorphic rhabdomyosarcoma (PRMS) is a rare and aggressive adult sarcoma with a median overall survival of less than 2 years. Most PRMS do not respond to conventional chemotherapy and/or radiation, and targeted therapies are nonexistent as few PRMS have undergone the molecular characterization necessary to identify therapeutic options. To date, complex structural and few recurrent regional copy alterations have been reported in the PRMS cases evaluated by cytogenetic and comparative genomic hybridization. Thus, there remains an urgent need for more comprehensive molecular profiling to both understand disease pathogenesis and to identify potentially actionable targets. Ten PRMS resection cases were retrieved from institutional archives and clinicopathologic demographics were recorded. All tumors were subjected to DNA-based targeted next-generation sequencing (NGS) of 340 cancer-related genes while a subset (six cases) underwent gene-expression profiling of 770 genes. Alterations identified by NGS included genes involved in cell cycle regulation (90%), the RAS/MAPK and AKT pathways (80%), telomere maintenance (40%), chromatin remodeling (40%), and DNA repair (20%), as well as the cAMP-signaling pathway (10%). Microsatellite instability was absent in all cases, and tumor mutational burden was predominantly low. Gene expression profiling revealed up-regulation of many of the same pathways, including the RTK/MAPK, AKT/PIK3CA/mTOR, Wnt, Hedgehog and JAK/STAT pathways. Survival analysis demonstrated patients with concurrent biallelic inactivation of CDKN2A and TP53 showed significantly shorter overall survival (median: 2 vs. 50 months). Our integrated molecular characterization identified not only potentially targetable alterations, but also prognostic markers for stratification of PRMS patients.


Assuntos
Rabdomiossarcoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Desenvolvimento de Medicamentos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Rabdomiossarcoma/diagnóstico , Rabdomiossarcoma/genética , Rabdomiossarcoma/metabolismo , Rabdomiossarcoma/patologia , Transcriptoma/genética
19.
J Immunother Cancer ; 9(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34465597

RESUMO

BACKGROUND: Dedifferentiated liposarcoma (DDLPS) is one of the most common soft tissue sarcoma subtypes and is devastating in the advanced/metastatic stage. Despite the observation of clinical responses to PD-1 inhibitors, little is known about the immune microenvironment in relation to patient prognosis. METHODS: We performed a retrospective study of 61 patients with DDLPS. We completed deep sequencing of the T-cell receptor (TCR) ß-chain and RNA sequencing for predictive modeling, evaluating both immune markers and tumor escape genes. Hierarchical clustering and recursive partitioning were employed to elucidate relationships of cellular infiltrates within the tumor microenvironment, while an immune score for single markers was created as a predictive tool. RESULTS: Although many DDLPS samples had low TCR clonality, high TCR clonality combined with low T-cell fraction predicted lower 3-year overall survival (p=0.05). Higher levels of CD14+ monocytes (p=0.02) inversely correlated with 3-year recurrence-free survival (RFS), while CD4+ T-cell infiltration (p=0.05) was associated with a higher RFS. Genes associated with longer RFS included PD-1 (p=0.003), ICOS (p=0.006), BTLA (p=0.033), and CTLA4 (p=0.02). In a composite immune score, CD4+ T cells had the strongest positive predictive value, while CD14+ monocytes and M2 macrophages had the strongest negative predictive values. CONCLUSIONS: Immune cell infiltration predicts clinical outcome in DDLPS, with CD4+ cells associated with better outcomes; CD14+ cells and M2 macrophages are associated with worse outcomes. Future checkpoint inhibitor studies in DDLPS should incorporate immunosequencing and gene expression profiling techniques that can generate immune landscape profiles.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Macrófagos/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Diferenciação Celular , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Lipossarcoma , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados da Assistência ao Paciente , Estudos Retrospectivos , Adulto Jovem
20.
Radiother Oncol ; 164: 73-82, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34506832

RESUMO

PURPOSE: In high-grade soft-tissue sarcomas (STS) the standard of care encompasses multimodal therapy regimens. While there is a growing body of evidence for prognostic pretreatment radiomic models, we hypothesized that temporal changes in radiomic features following neoadjuvant treatment ("delta-radiomics") may be able to predict the pathological complete response (pCR). METHODS: MRI scans (T1-weighted with fat-saturation and contrast-enhancement (T1FSGd) and T2-weighted with fat-saturation (T2FS)) of patients with STS of the extremities and trunk treated with neoadjuvant therapy were gathered from two independent institutions (training: 103, external testing: 53 patients). pCR was defined as <5% viable cells. After segmentation and preprocessing, 105 radiomic features were extracted. Delta-radiomic features were calculated by subtraction of features derived from MRI scans obtained before and after neoadjuvant therapy. After feature reduction, machine learning modeling was performed in 100 iterations of 3-fold nested cross-validation. Delta-radiomic models were compared with single timepoint models in the testing cohort. RESULTS: The combined delta-radiomic models achieved the best area under the receiver operating characteristic curve (AUC) of 0.75. Pre-therapeutic tumor volume was the best conventional predictor (AUC 0.70). The T2FS-based delta-radiomic model had the most balanced classification performance with a balanced accuracy of 0.69. Delta-radiomic models achieved better reproducibility than single timepoint radiomic models, RECIST or the peri-therapeutic volume change. Delta-radiomic models were significantly associated with survival in multivariate Cox regression. CONCLUSION: This exploratory analysis demonstrated that MRI-based delta-radiomics improves prediction of pCR over tumor volume and RECIST. Delta-radiomics may one day function as a biomarker for personalized treatment adaptations.


Assuntos
Terapia Neoadjuvante , Sarcoma , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes , Estudos Retrospectivos , Sarcoma/diagnóstico por imagem , Sarcoma/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA