Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 14(43): 8692-8697, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30204209

RESUMO

We computationally study the thermodynamic assembly of more than 40 000 hard, convex polyhedra belonging to three families of shapes associated with the triangle groups 323, 423, and 523. Each family is defined by vertex and/or edge truncation of symmetric polyhedra with equal edge length, producing shapes for which the majority are intermediates of more symmetric polyhedra found among the Platonic, Archimedean, and Catalan solids. In addition to the complex crystals cI16 lithium, BC8 silicon, γ-brass, ß-manganese, and a dodecagonal quasicrystal, we find that most intermediate shapes assemble distorted variants of four basic cubic crystals: face-centered cubic, body-centered cubic, simple cubic, and diamond. To quantify the degree of distortion, we developed an algorithm that extracts lattice vectors from particle positions and then evaluates closeness to the four reference cubic crystals. This analysis allows us to group together in shape space related intermediate structures that would otherwise be placed in different lattice systems had we followed the lattice systems' strict definitions for angles and lengths of lattice vectors. The resulting landscapes show, as a function of shape, regions where ordered structures assemble, what is assembled and at what density, locations of transitions between regions of ordered structures, and regions of disorder. Our results provide a guide to self-assembling a host of related colloidal crystals through systematic design, by careful tweaking of the particle shape.

2.
Sci Adv ; 2(11): e1601019, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28138527

RESUMO

We combine numerical simulations and experiments to design a new class of reconfigurable waveguides based on three-dimensional origami-inspired metamaterials. Our strategy builds on the fact that the rigid plates and hinges forming these structures define networks of tubes that can be easily reconfigured. As such, they provide an ideal platform to actively control and redirect the propagation of sound. We design reconfigurable systems that, depending on the externally applied deformation, can act as networks of waveguides oriented along one, two, or three preferential directions. Moreover, we demonstrate that the capability of the structure to guide and radiate acoustic energy along predefined directions can be easily switched on and off, as the networks of tubes are reversibly formed and disrupted. The proposed designs expand the ability of existing acoustic metamaterials and exploit complex waveguiding to enhance control over propagation and radiation of acoustic energy, opening avenues for the design of a new class of tunable acoustic functional systems.

3.
Phys Rev Lett ; 112(23): 235502, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24972217

RESUMO

Motivated by colloidal lithography, we study the problem of characterizing periodic planar patterns formed by shadows of spheres. The set of patterns accessible to shadow lithography spanned by lattice types, tilt, and rotation angles is rich, but topological considerations of shadow overlap along simplex edges and faces lead us to just 4+1 distinct categories. These planar patterns are in one-to-one correspondence with a 4-valued index linked to Cayley-Menger determinants. The characterization is confirmed by a phase diagram which predicts surface patterns for any experimental geometry.


Assuntos
Modelos Teóricos , Nanotecnologia/métodos , Coloides/química
4.
Artigo em Inglês | MEDLINE | ID: mdl-23944434

RESUMO

Motivated by breakthroughs in the synthesis of faceted nano- and colloidal particles, as well as theoretical and computational studies of their packings, we investigate a family of truncated triangular bipyramids. We report dense periodic packings with small unit cells that were obtained via numerical and analytical optimization. The maximal packing fraction φ(max) changes continuously with the truncation parameter t. Eight distinct packings are identified based on discontinuities in the first and second derivatives of φ(max)(t). These packings differ in the number of particles in the fundamental domain (unit cell) and the type of contacts between the particles. In particular, we report two packings with four particles in the unit cell for which both φ(max)(t) and φ(max)'(t) are continuous and the discontinuity occurs in the second derivative only. In the self-assembly simulations that we perform for larger boxes with 2048 particles, only one out of eight packings is found to assemble. In addition, the degenerate quasicrystal reported previously for triangular bipyramids without truncation [Haji-Akbari et al., Phys. Rev. Lett. 107, 215702 (2011)] assembles for truncations as high as 0.45. The self-assembly propensities for the structures formed in the thermodynamic limit are explained using the isoperimetric quotient of the particles and the coordination number in the disordered fluid and in the assembled structure.

5.
Adv Mater ; 25(36): 5044-9, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23878067

RESUMO

Buckling is exploited to design a new class of three-dimensional metamaterials with negative Poisson's ratio. A library of auxetic building blocks is identified and procedures are defined to guide their selection and assembly. The auxetic properties of these materials are demonstrated both through experiments and finite element simulations and exhibit excellent qualitative and quantitative agreement.

6.
Phys Rev Lett ; 110(14): 148303, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-25167045

RESUMO

Using experiments and simulations, we investigate the clusters that form when colloidal spheres stick irreversibly to--or "park" on--smaller spheres. We use either oppositely charged particles or particles labeled with complementary DNA sequences, and we vary the ratio α of large to small sphere radii. Once bound, the large spheres cannot rearrange, and thus the clusters do not form dense or symmetric packings. Nevertheless, this stochastic aggregation process yields a remarkably narrow distribution of clusters with nearly 90% tetrahedra at α = 2.45. The high yield of tetrahedra, which reaches 100% in simulations at α = 2.41, arises not simply because of packing constraints, but also because of the existence of a long-time lower bound that we call the "minimum parking" number. We derive this lower bound from solutions to the classic mathematical problem of spherical covering, and we show that there is a critical size ratio α(c) = (1 + sqrt[2]) ≈ 2.41, close to the observed point of maximum yield, where the lower bound equals the upper bound set by packing constraints. The emergence of a critical value in a random aggregation process offers a robust method to assemble uniform clusters for a variety of applications, including metamaterials.


Assuntos
Coloides/química , DNA/química , Modelos Químicos , Simulação por Computador , Eletricidade Estática
7.
Proc Natl Acad Sci U S A ; 109(16): 5978-83, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22451901

RESUMO

We introduce a class of continuum shell structures, the Buckliball, which undergoes a structural transformation induced by buckling under pressure loading. The geometry of the Buckliball comprises a spherical shell patterned with a regular array of circular voids. In order for the pattern transformation to be induced by buckling, the possible number and arrangement of these voids are found to be restricted to five specific configurations. Below a critical internal pressure, the narrow ligaments between the voids buckle, leading to a cooperative buckling cascade of the skeleton of the ball. This ligament buckling leads to closure of the voids and a reduction of the total volume of the shell by up to 54%, while remaining spherical, thereby opening the possibility of encapsulation. We use a combination of precision desktop-scale experiments, finite element simulations, and scaling analyses to explore the underlying mechanics of these foldable structures, finding excellent qualitative and quantitative agreement. Given that this folding mechanism is induced by a mechanical instability, our Buckliball opens the possibility for reversible encapsulation, over a wide range of length scales.


Assuntos
Simulação por Computador , Módulo de Elasticidade , Polivinil/química , Siloxanas/química , Algoritmos , Análise de Elementos Finitos , Modelos Químicos , Modelos Estruturais , Pressão , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA