Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 15(12): 6347-6358, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38768294

RESUMO

Age-related macular degeneration (AMD) is a prominent cause of vision loss among the elderly, and the treatment options for dry AMD (dAMD) are severely limited. Lutein has a favorable effect on the treatment of dAMD. Algae oil, rich in docosahexaenoic acid (DHA), is considered an effective intervention for eye diseases. In this study, casein-mannose conjugates were prepared to form algal oil-in-water Pickering emulsions by ultrasound-assisted Maillard reaction. As the ultrasound time increased from 0 to 25 min, the droplet size decreased to 648.2 ± 21.18 nm, which substantially improved the stability of the Pickering emulsions. The retention of lutein in the Pickering emulsions under ultrasonic treatment for 20 min was significantly improved under different conditions. The simulated gastrointestinal digestion revealed that ultrasound-assisted Pickering emulsions are an effective method for improving the bioaccessibility of lutein (19.76%-53.34%). In vivo studies elucidated that the lutein-loaded Pickering emulsions could effectively alleviate retinal thinning induced by sodium iodate (NaIO3) in mice with dAMD. Mechanistically, lutein-loaded Pickering emulsions significantly reduced oxidative stress by decreasing the MDA level, increasing the SOD production, and reducing the retinal ROS production. These findings explored the protective effects of lutein-loaded Pickering emulsions on dAMD and offered promising prospects for the nutritional intervention of dAMD.


Assuntos
Emulsões , Luteína , Degeneração Macular , Reação de Maillard , Animais , Emulsões/química , Luteína/farmacologia , Luteína/química , Luteína/administração & dosagem , Camundongos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Humanos , Modelos Animais de Doenças
2.
Int J Biol Macromol ; 271(Pt 2): 132461, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38777024

RESUMO

In this study, a novel one-step coaxial electrospinning process is employed to fabricate shell-core structure fibers choosing Chlorella pyrenoidosa proteins (CP) as the core material. These nanofibers, serving as the wall material for probiotic encapsulation, aimed to enhance the stability and antioxidant activity of probiotics in food processing, storage, and gastrointestinal environments under sensitive conditions. Morphological analysis was used to explore the beads-on-a-string morphology and core-shell structure of the electrospun fibers. Probiotics were successfully encapsulated within the fibers (7.97 log CFU/g), exhibiting a well-oriented structure along the distributed fibers. Compared to free probiotics and uniaxial fibers loaded with probiotics, encapsulation within microalgae proteins/alginate core-shell structure nanofibers significantly enhanced the probiotic cells' tolerance to simulated gastrointestinal conditions (p < 0.05). Thermal analysis indicated that microalgae proteins/alginate core-shell structure nanofibers displayed superior thermal stability compared to uniaxial fibers. The introduction of CP resulted in a 50 % increase in the antioxidant capacity of probiotics-loaded microalgae proteins/alginate nanofibers compared to uniaxial alginate nanofibers, with minimal loss of viability (0.8 log CFU/g) after 28 days of storage at 4 °C. In summary, this dual-layer carrier holds immense potential in probiotic encapsulation and enhancing their resistance to harsh conditions.


Assuntos
Alginatos , Microalgas , Nanofibras , Probióticos , Alginatos/química , Nanofibras/química , Probióticos/química , Microalgas/química , Antioxidantes/química , Antioxidantes/farmacologia , Chlorella/química , Viabilidade Microbiana/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA