Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Anim Microbiome ; 6(1): 54, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39380116

RESUMO

BACKGROUND: Our previous study revealed that feeding the antimicrobial peptide (AMP) product Scy-hepc significantly enhances the growth of mariculture fish through the activation of the GH-Jak2-STAT5-IGF1 axis. However, the contribution of gut microbiota to this growth enhancement remains unclear. This study aimed to elucidate the potential mechanism involved in intestinal absorption and modulation of gut microbiota in Epinephelus akaara following Scy-hepc feeding. RESULTS: The results showed that a 35 day regimen of Scy-hpec markedly promoted the growth of E. akaara compared to groups supplemented with either florfenicol, B. subtilis, or a vector. The growth enhancement is likely attributed to alterations in microbiota colonization in the foregut and midgut, characterized by an increasing abundance of potential probiotics (Rhizobiaceae and Lysobacter) and a decreased abundance of opportunistic pathogens (Psychrobacter and Brevundimonas) as determined by 16S rRNA analysis. Additionally, similar to the effect of florfenicol feeding, Scy-hepc significantly improved host survival rate by over 20% in response to a lethal dose challenge with Edwardsiella tarda. Further investigations demonstrated that Scy-hepc is absorbed by the fish foregut (20-40 min) and midgut (20-30 min) as confirmed by Western blot, ELISA, and Immunofluorescence. The absorption of Scy-hepc affected the swimming, swarming and surfing motility of Vibrio harveyi and Bacillus thuringiensis isolated from E. akaara's gut. Moreover, Scy-hepc induced the downregulation of 40 assembly genes and the upregulation expression of 5, with the most significant divergence in gene expression between opportunistic pathogens and probiotics concentrated in their motility genes (PomA/B, MotA/B). CONCLUSIONS: In summary, this study shows that feeding AMP Scy-hepc can promote growth and bolster immunity in E. akaara. These beneficial effects are likely due to the absorption of Scy-hepc in the fish's foregut and midgut, which modulates the colonization and motility of commensal bacteria, leading to favorable changes in the composition of the foregut and midgut microbiota. Therefore, a profound understanding of the mechanisms by which antimicrobial peptides affect host gut microbiota will contribute to a comprehensive assessment of their advantages and potential application prospects as substitutes for antibiotics in fish health and improving aquaculture practices.

2.
Int J Biol Macromol ; : 136026, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39326625

RESUMO

Prophyra is one of the most economically valuable species of red algae, with porphyran being its primary bioactive polysaccharide. Highly active enzymes play a significant role in the research and development of porphyran. This study identified a PKD domain within polysaccharide-binding protein, displaying an apparent molecular weight (Mw) of 20.20 kDa that is approximately twice the theoretical value, thereby suggesting the possibility of self-aggregation. By fusing it with porphyranase Por16B_Wf, a chimeric enzyme PKD-Por16B was constructed. It was confirmed that the fusion enzyme successfully assembles into an aggregation under the mediation of PKD domain, with its apparent Mw (65.13 kDa) significantly higher than theoretical Mw (46.02 kDa). The activity of PKD-Por16B was remarkedly enhanced from 65.31 U/mg to 325.69 U/mg, accompanied by an improvement in enzymatic stability. Meanwhile, the hydrolysis pattern of PKD-Por16B remained unaltered in comparison to that of Por16B_Wf, indicating no significant deviation in its substrate specificity or reaction mechanism. These results suggest the feasibility of a strategy based on domain-induced aggregation to enhance enzyme activity, which is both easy and economical.

3.
J Neurosci ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227158

RESUMO

Cochlear hair cells (HCs) sense sound waves and allow us to hear. Loss of HCs will cause irreversible sensorineural hearing loss. It is well known that DNA damage repair plays a critical role in protecting cells in many organs. However, how HCs respond to DNA damage and how defective DNA damage repair contributes to hearing loss remain elusive.In this study, we showed that cisplatin induced DNA damage in outer hair cells (OHCs) and promoted OHC loss, leading to hearing loss in mice of either sex. Cisplatin induced the expression of Brca1, a DNA damage repair factor, in OHCs. Deficiency of Brca1 induced OHC and hearing loss, and further promoted cisplatin-induced DNA damage in OHCs, accelerating OHC loss. This study provides the first in vivo evidence demonstrating that cisplatin mainly induces DNA damage in OHCs and that BRCA1 promotes repair of DNA damage in OHCs and prevents hearing loss. Our findings not only demonstrate that DNA-damage inducible agent generates DNA damage in postmitotic HCs, but also suggest that DNA repair factors, like BRCA1, protect postmitotic HCs from DNA-damage induced cell death and hearing loss.Significance statement Sensorineural hearing loss is the most severe hearing loss caused by irreversible loss of cochlear hair cells. Hair cells are vulnerable to aging and ototoxic drug. Though DNA damage repair plays a critical role in protecting cells in many organs, it is poorly understood how DNA damage is repaired in hair cells. This study provides the first in vivo evidence demonstrating that cisplatin mainly induces DNA damage in outer hair cells and that BRCA1 promotes repair of DNA damage in outer hair cells and prevents outer hair cell loss as well as hearing loss.

4.
Int J Biol Macromol ; 280(Pt 2): 135715, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39293626

RESUMO

Sulfated fucan has attracted increasing research interest due to its various biological activities. Endo-1,3-fucanases are favorable tools for structure investigation and structure-activity relationships establishment of sulfated fucan. However, the three-dimensional structure of enzymes from the GH174 family has not been disclosed, which hinders the understanding of the action mechanism. This study reports the first crystal structure of endo-1,3-fucanase from GH174 family (Fun174A) at a resolution of 1.60 Å. Notably, Fun174A exhibited an unusual distorted ß-sandwich fold, which is distinct from other known glycoside hydrolase folds. The conserved amino acid residues D119 and H154 were proposed as the catalytic residues in the family. Molecular docking suggested that Fun174A primarily recognized sulfated fucan through a series of polar amino acid residues around the substrate binding pocket. Furthermore, structural bioinformatics analysis suggested that the structural analogs of Fun174A may be extensively implicated in the bacterial metabolism of polysaccharides, which provided opportunities for the discovery of novel glycoside hydrolases. This study offers new insights into the structural diversity of glycoside hydrolases and will contribute to the establishment of a novel clan of glycoside hydrolases.

5.
J Agric Food Chem ; 72(36): 20114-20121, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39214858

RESUMO

Understanding the substrate specificity of carrageenases has long been of interest in biotechnology applications. So far, the structural basis of the ßκ-carrageenase that hydrolyzes furcellaran, a major hybrid carrageenan, remains unclear. Here, the crystal structure of Cgbk16A_Wf, as a representative of the ßκ-carrageenase from GH16_13, was determined, and the structural characteristics of this subfamily were elucidated for the first time. The substrate binding mode was clarified through a structure analysis of the hexasaccharide-bound complex and molecular docking. The binding pocket involves a conserved catalytic motif and several specific residues associated with substrate recognition. Functions of residues R88, E290, and E184 were validated through site-directed mutagenesis. Comparing ßκ-carrageenase with κ-carrageenase, we proposed that their different substrate specificities are partly due to the distinct conformations of subsite -1. This research offers a comprehensive understanding of the recognition mechanism of carrageenases and provides valuable theoretical support for enzyme modification and carrageenan oligosaccharide preparation.


Assuntos
Proteínas de Bactérias , Carragenina , Glicosídeo Hidrolases , Simulação de Acoplamento Molecular , Especificidade por Substrato , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carragenina/química , Carragenina/metabolismo , Domínio Catalítico , Sítios de Ligação , Sequência de Aminoácidos , Mutagênese Sítio-Dirigida , Catálise
6.
Chemosphere ; 364: 143077, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39134182

RESUMO

Benzo[a]pyrene (BaP), a representative five-membered polycyclic aromatic hydrocarbon, has been extensively studied as a pollutant for decades. Despite this, sex-specific responses to BaP exposure remain poorly understood. This study employed a life-cycle exposure approach to investigate the effects of prolonged BaP exposure on marine medaka (Oryzias melastigma), highlighting sex-specific responses. After a 90-day exposure period, significant variations in biometric measurements and oxidative stress markers were observed between male and female fish. BaP exposure resulted in weak detoxification defense in males, while females exhibited an opposite response. Transcriptomic analysis revealed 13 significantly enriched pathways in males and 11 in females, with varying numbers of differentially expressed genes between the sexes, highlighting distinct biological responses. Host resistance assay showed higher mortality rates among BaP-exposed males, and suppressed immune gene expressions and lysozyme activity, while females demonstrated enhanced immune genes and lysozyme activity post-challenge, indicating a more resilient defense response. Furthermore, after a one-month depuration period following BaP exposure, male medaka demonstrated slower recoverability compared to females. These findings underscore sex-specific effects of BaP exposure on fish, with females displaying stronger resilience. Understanding these distinctions are crucial for accurately assessing the impact of environmental pollutants on the aquatic population and ecosystem maintenance.


Assuntos
Benzo(a)pireno , Oryzias , Estresse Oxidativo , Poluentes Químicos da Água , Animais , Oryzias/fisiologia , Feminino , Benzo(a)pireno/toxicidade , Masculino , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Fatores Sexuais , Transcriptoma/efeitos dos fármacos
7.
Aquat Toxicol ; 273: 107016, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38991362

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) accumulate and integrate into aquatic environments, raising concerns about the well-being and safety of aquatic ecosystems. Benzo[a]pyrene (BaP), a persistent PAH commonly detected in the environment, has been extensively studied. However, the broader multifaceted toxicity potential of BaP on the early life stages of marine fish during chronic exposure to environmentally relevant concentrations needs further exploration. To fill these knowledge gaps, this study assessed the in vivo biotoxicity of BaP (1, 4, and 8 µg/L) in marine medaka (Oryzias melastigma) during early development over a 30-day exposure period. The investigation included morphological, biochemical, and molecular-level analyses to capture the broader potential of BaP toxicity. Morphological analyses showed that exposure to BaP resulted in skeletal curvatures, heart anomalies, growth retardation, elevated mortality, delayed and reduced hatching rates. Biochemical analyses revealed that BaP exposure not only created oxidative stress but also disrupted the activities of antioxidant enzymes. This disturbance in redox balance was further explored by molecular level investigation. The transcriptional profiles revealed impaired oxidative phosphorylation (OXPHOS) and tricarboxylic acid (TCA) cycle pathways, which potentially inhibited the oxidative respiratory chain in fish following exposure to BaP, and reduced the production of adenosine triphosphate (ATP) and succinate dehydrogenase (SDH). Furthermore, this investigation indicated a potential connection to apoptosis, as demonstrated by fluorescence microscopy and histological analyses, and supported by an increase in the expression levels of related genes via real-time quantitative PCR. This study enhances our understanding of the molecular-level impacts of BaP's multifaceted toxicity in the early life stages of marine medaka, and the associated risks.


Assuntos
Benzo(a)pireno , Oryzias , Oxirredução , Poluentes Químicos da Água , Animais , Benzo(a)pireno/toxicidade , Oryzias/genética , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos
8.
BMC Microbiol ; 24(1): 239, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961321

RESUMO

BACKGROUND: The gut microbiota significantly influences the health and growth of red-spotted grouper (Epinephelus akaara), a well-known commercial marine fish from Fujian Province in southern China. However, variations in survival strategies and seasons can impact the stability of gut microbiota data, rendering it inaccurate in reflecting the state of gut microbiota. Which impedes the effective enhancement of aquaculture health through a nuanced understanding of gut microbiota. Inspired by this, we conducted a comprehensive analysis of the gut microbiota of wild and captive E. akaara in four seasons. RESULTS: Seventy-two E. akaara samples were collected from wild and captive populations in Dongshan city, during four different seasons. Four sections of the gut were collected to obtain comprehensive information on the gut microbial composition and sequenced using 16S rRNA next-generation Illumina MiSeq. We observed the highest gut microbial diversity in both captive and wild E. akaara during the winter season, and identified strong correlations with water temperature using Mantel analysis. Compared to wild E. akaara, we found a more complex microbial network in captive E. akaara, as evidenced by increased abundance of Bacillaceae, Moraxellaceae and Enterobacteriaceae. In contrast, Vibrionaceae, Clostridiaceae, Flavobacteriaceae and Rhodobacteraceae were found to be more active in wild E. akaara. However, some core microorganisms, such as Firmicutes and Photobacterium, showed similar distribution patterns in both wild and captive groups. Moreover, we found the common community composition and distribution characteristics of top 10 core microbes from foregut to hindgut in E. akaara. CONCLUSIONS: Collectively, the study provides relatively more comprehensive description of the gut microbiota in E. akaara, taking into account survival strategies and temporal dimensions, which yields valuable insights into the gut microbiota of E. akaara and provides a valuable reference to its aquaculture.


Assuntos
Bactérias , Microbioma Gastrointestinal , RNA Ribossômico 16S , Estações do Ano , Animais , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , China , Ecossistema , Filogenia , Aquicultura , Bass/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , DNA Bacteriano/genética , Biodiversidade
9.
Biochem Pharmacol ; 226: 116344, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38852647

RESUMO

Antimicrobial peptides (AMPs) are an important component of innate immunity in both vertebrates and invertebrates, and some of the unique characteristics of AMPs are usually associated with their living environment. The marine fish, mudskipper Boleophthalmus pectinirostris, usually live amphibiously in intertidal environments that are quite different from other fish species, which would be an exceptional source of new AMPs. In the study, an AMP named Bolespleenin334-347 was identified, which was a truncated peptide derived from a new functional gene found in B. pectinirostris, that was up-regulated in response to bacterial challenge. Bolespleenin334-347 had only 14 amino acid residues, including five consecutive arginine residues. It was found that the peptide had broad-spectrum antibacterial activity, good thermal stability and sodium ion tolerance. Bolespleenin334-347 killed Acinetobacter baumannii and Staphylococcus aureus by disrupting the structural integrity of the bacterial membrane, leading to leakage of the cellular contents, and inducing accumulation of bacterial endogenous reactive oxygen species (ROS). In addition, Bolespleenin334-347 effectively inhibited biofilm formation of A. baumannii and S. aureus and long-term treatment did not lead to the development of resistance. Importantly, Bolespleenin334-347 maintained stable activity against clinically multi-drug resistant bacterial strains. In addition, it was noteworthy that Bolespleenin334-347 showed superior efficacy to LL-37 and vancomycin in a constructed mouse model of MRSA-induced superficial skin infections, as evidenced by a significant reduction in bacterial load and more favorable wound healing. This study provides an effective antimicrobial agent for topical skin infections with potential therapeutic efficacy for infections with drug-resistant bacteria, including MRSA.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Animais , Camundongos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Sequência de Aminoácidos , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Peixes , Acinetobacter baumannii/efeitos dos fármacos , Feminino , Staphylococcus aureus/efeitos dos fármacos , Perciformes/metabolismo
10.
AMIA Jt Summits Transl Sci Proc ; 2024: 515-524, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827062

RESUMO

Clinical notes are full of ambiguous medical abbreviations. Contextual knowledge has been leveraged by recent learning-based approaches for sense disambiguation. Previous findings indicated that structural elements of clinical notes entail useful characteristics for informing different interpretations of abbreviations, yet they have remained underutilized and have not been fully investigated. To our best knowledge, the only study exploring note structures simply enumerated the headers in the notes, where such representations are not semantically meaningful. This paper describes a learning-based approach using the note structure represented by the semantic types predefined in Unified Medical Language System (UMLS). We evaluated the representation in addition to the widely used N-gram with three learning models on two different datasets. Experiments indicate that our feature augmentation consistently improved model performance for abbreviation disambiguation, with the optimal F1 score of 0.93.

11.
Sci Data ; 11(1): 600, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849436

RESUMO

A scalable, reusable, and broad-coverage unified material knowledge representation shows its importance and will bring great benefits to data sharing among materials communities. A knowledge graph (KG) for materials terminology, which is a formal collection of term entities and relationships, is conceptually important to achieve this goal. In this work, we propose a KG for materials terminology, named Materials Genome Engineering Database Knowledge Graph (MGED-KG), which is automatically constructed from text corpus via natural language processing. MGED-KG is the most comprehensive KG for materials terminology in both Chinese and English languages, consisting of 8,660 terms and their explanations. It encompasses 11 principal categories, such as Metals, Composites, Nanomaterials, each with two or three levels of subcategories, resulting in a total of 235 distinct category labels. For further application, a knowledge web system based on MGED-KG is developed and shows its great power in improving data sharing efficiency from the aspects of query expansion, term, and data recommendation.

12.
Int J Biol Macromol ; 271(Pt 1): 132622, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38795894

RESUMO

BACKGROUND: Sulfated fucan has gained interest due to its various physiological activities. Endo-1,3-fucanases are valuable tools for investigating the structure and establishing structure-activity relationships of sulfated fucan. However, the substrate recognition mechanism of endo-1,3-fucanases towards sulfated fucan remains unclear, limiting the application of endo-1,3-fucanases in sulfated fucan research. SCOPE AND APPROACH: This study presented the first crystal structure of endo-1,3-fucanase (Fun168A) and its complex with the tetrasaccharide product, utilizing X-ray diffraction techniques. The novel subsite specificity of Fun168A was identified through glycomics and nuclear magnetic resonance (NMR). KEY FINDINGS AND CONCLUSIONS: The structure of Fun168A was determined at 1.92 Å. Residues D206 and E264 acted as the nucleophile and general acid/base, respectively. Notably, Fun168A strategically positioned a series of polar residues at the subsites ranging from -2 to +3, enabling interactions with the sulfate groups of sulfated fucan through salt bridges or hydrogen bonds. Based on the structure of Fun168A and its substrate recognition mechanisms, the novel subsite specificities at the -2 and +2 subsites of Fun168A were identified. Overall, this study provided insight into the structure and substrate recognition mechanism of endo-1,3-fucanase for the first time and offered a valuable tool for further research and development of sulfated fucan.


Assuntos
Polissacarídeos , Polissacarídeos/química , Especificidade por Substrato , alfa-L-Fucosidase/química , alfa-L-Fucosidase/metabolismo , Modelos Moleculares , Cristalografia por Raios X , Sulfatos/química , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Relação Estrutura-Atividade
13.
J Biomed Inform ; 154: 104649, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697494

RESUMO

OBJECTIVE: Automated identification of eligible patients is a bottleneck of clinical research. We propose Criteria2Query (C2Q) 3.0, a system that leverages GPT-4 for the semi-automatic transformation of clinical trial eligibility criteria text into executable clinical database queries. MATERIALS AND METHODS: C2Q 3.0 integrated three GPT-4 prompts for concept extraction, SQL query generation, and reasoning. Each prompt was designed and evaluated separately. The concept extraction prompt was benchmarked against manual annotations from 20 clinical trials by two evaluators, who later also measured SQL generation accuracy and identified errors in GPT-generated SQL queries from 5 clinical trials. The reasoning prompt was assessed by three evaluators on four metrics: readability, correctness, coherence, and usefulness, using corrected SQL queries and an open-ended feedback questionnaire. RESULTS: Out of 518 concepts from 20 clinical trials, GPT-4 achieved an F1-score of 0.891 in concept extraction. For SQL generation, 29 errors spanning seven categories were detected, with logic errors being the most common (n = 10; 34.48 %). Reasoning evaluations yielded a high coherence rating, with the mean score being 4.70 but relatively lower readability, with a mean of 3.95. Mean scores of correctness and usefulness were identified as 3.97 and 4.37, respectively. CONCLUSION: GPT-4 significantly improves the accuracy of extracting clinical trial eligibility criteria concepts in C2Q 3.0. Continued research is warranted to ensure the reliability of large language models.


Assuntos
Ensaios Clínicos como Assunto , Humanos , Processamento de Linguagem Natural , Software , Seleção de Pacientes
14.
Appl Clin Inform ; 15(2): 357-367, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38447965

RESUMO

BACKGROUND: Narrative nursing notes are a valuable resource in informatics research with unique predictive signals about patient care. The open sharing of these data, however, is appropriately constrained by rigorous regulations set by the Health Insurance Portability and Accountability Act (HIPAA) for the protection of privacy. Several models have been developed and evaluated on the open-source i2b2 dataset. A focus on the generalizability of these models with respect to nursing notes remains understudied. OBJECTIVES: The study aims to understand the generalizability of pretrained transformer models and investigate the variability of personal protected health information (PHI) distribution patterns between discharge summaries and nursing notes with a goal to inform the future design for model evaluation schema. METHODS: Two pretrained transformer models (RoBERTa, ClinicalBERT) fine-tuned on i2b2 2014 discharge summaries were evaluated on our data inpatient nursing notes and compared with the baseline performance. Statistical testing was deployed to assess differences in PHI distribution across discharge summaries and nursing notes. RESULTS: RoBERTa achieved the optimal performance when tested on an external source of data, with an F1 score of 0.887 across PHI categories and 0.932 in the PHI binary task. Overall, discharge summaries contained a higher number of PHI instances and categories of PHI compared with inpatient nursing notes. CONCLUSION: The study investigated the applicability of two pretrained transformers on inpatient nursing notes and examined the distinctions between nursing notes and discharge summaries concerning the utilization of personal PHI. Discharge summaries presented a greater quantity of PHI instances and types when compared with narrative nursing notes, but narrative nursing notes exhibited more diversity in the types of PHI present, with some pertaining to patient's personal life. The insights obtained from the research help improve the design and selection of algorithms, as well as contribute to the development of suitable performance thresholds for PHI.


Assuntos
Narração , Humanos , Registros Eletrônicos de Saúde , Modelos Teóricos
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123800, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38145583

RESUMO

D-A molecules find extensive use in intelligent stimulus-response systems due to their exceptional attributes, including high sensitivity, rapid response, wide compatibility, and structural adaptability. The strength of Intramolecular Charge Transfer (ICT) plays a pivotal role in determining the performance of these devices. To enhance the ICT strength and explore new applications for D-A molecules, we meticulously designed a pair of symmetric dimethylamino-substituted bi-1,3,4-oxadiazole derivatives (DMAOXD and DMAOXDBEN). These symmetric D-A-A-D molecules, with strong electron donor terminals, displayed a modest redshift of less than 25 nm in the UV-vis absorption spectra. However, there was a significant redshift in the emission spectra (140 nm for DMAOXD and 170 nm for DMAOXDBEN) when transitioning from cyclohexane to dimethyl sulfoxide, indicating a pronounced ICT characteristic. Theoretical calculations support the idea that the dimethylaminophenyl unit serves as an electron donor in both DMAOXD and DMAOXDBEN, while the 1,3,4-oxadiazole and central benzene ring act as acceptors. The pronounced ICT characteristic observed in DMAOXD and DMAOXDBEN can be attributed to long-distance electron transfer. Additionally, it's noteworthy that the emission of DMAOXD and DMAOXDBEN solution samples can be quenched by adding trifluoroacetic acid (TFA) and restored by the addition of triethylamine (TEA). Inspired by this, a pattern created with ink samples containing DMAOXD and DMAOXDBEN can be concealed through fumigation with TFA and subsequently revealed by treating them with TEA, suggesting their potential use in data encryption.

16.
Res Sq ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38045411

RESUMO

Rare disease patients often endure prolonged diagnostic odysseys and may still remain undiagnosed for years. Selecting the appropriate genetic tests is crucial to lead to timely diagnosis. Phenotypic features offer great potential for aiding genomic diagnosis in rare disease cases. We see great promise in effective integration of phenotypic information into genetic test selection workflow. In this study, we present a phenotype-driven molecular genetic test recommendation (Phen2Test) for pediatric rare disease diagnosis. Phen2Test was constructed using frequency matrix of phecodes and demographic data from the EHR before ordering genetic tests, with the objective to streamline the selection of molecular genetic tests (whole-exome / whole-genome sequencing, or gene panels) for clinicians with minimum genetic training expertise. We developed and evaluated binary classifiers based on 1,005 individuals referred to genetic counselors for potential genetic evaluation. In the evaluation using the gold standard cohort, the model achieved strong performance with an AUROC of 0.82 and an AUPRC of 0.92. Furthermore, we tested the model on another silver standard cohort (n=6,458), achieving an overall AUROC of 0.72 and an AUPRC of 0.671. Phen2Test was adjusted to align with current clinical guidelines, showing superior performance with more recent data, demonstrating its potential for use within a learning healthcare system as a genomic medicine intervention that adapts to guideline updates. This study showcases the practical utility of phenotypic features in recommending molecular genetic tests with performance comparable to clinical geneticists. Phen2Test could assist clinicians with limited genetic training and knowledge to order appropriate genetic tests.

17.
Biochem Pharmacol ; 218: 115917, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37952897

RESUMO

Antimicrobial resistance (AMR) constitutes a significant global threat to human health. In recent years, there has been a concerning surge in infections caused by multidrug-resistant bacteria, highlighting the pressing need to urgently explore novel and effective alternatives to conventional antibiotics. Antimicrobial peptides (AMPs) have emerged as a focal point of research, capturing significant attention as promising antimicrobial agents. In this study, we have identified a novel cationic antimicrobial peptide (AMP) named Scyreptin1-30, derived from the marine invertebrate Scylla paramamosain. The results showed that Scyreptin1-30 exhibits a broad-spectrum antimicrobial activity, demonstrating significant potency against both bacteria and fungi, and even against the clinically isolated multidrug-resistant bacteria Pseudomonas aeruginosa. Moreover, Scyreptin1-30 exhibited rapid bactericidal kinetic. The results of antibacterial mechanism showed that Scyreptin1-30 destroyed the integrity of bacterial membranes, leading to bacterial death and exhibited potent anti-biofilm activity against P. aeruginosa. The activity of Scyreptin1-30 against bacteria had a favorable thermal stability, displayed a certain ion tolerance, and showed no discernible cytotoxicity when assessed against both the mammalian cell line HEK293T and the fish cell lines ZF4. In an In vivo study, Scyreptin1-30 exhibited a remarkably reduction in the bacterial load caused by multidrug-resistant P. aeruginosa at the site of infection, and promoted wound healing in a mouse model of burn infection. This study indicated that Scyreptin1-30 holds promise as an effective antibacterial agent, potentially serving as a topical skin treatment against multidrug-resistant bacterial infections, including those caused by P. aeruginosa.


Assuntos
Anti-Infecciosos , Queimaduras , Infecções por Pseudomonas , Animais , Camundongos , Humanos , Pseudomonas aeruginosa , Peptídeos Antimicrobianos , Células HEK293 , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Bactérias , Queimaduras/tratamento farmacológico , Queimaduras/microbiologia , Testes de Sensibilidade Microbiana , Mamíferos
18.
Front Mol Neurosci ; 16: 1079529, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575969

RESUMO

Introduction: The pathogenic gene CDH23 plays a pivotal role in tip links, which is indispensable for mechanoelectrical transduction in the hair cells. However, the underlying molecular mechanism and signal regulatory networks that influence deafness is still largely unknown. Methods: In this study, a congenital deafness family, whole exome sequencing revealed a new mutation in the pathogenic gene CDH23, subsequently; the mutation has been validated using Sanger sequencing method. Then CRISPR/Cas9 technology was employed to knockout zebrafish cdh23 gene. Startle response experiment was used to compare with wide-type, the response to sound stimulation between wide-type and cdh23-/-. To further illustrate the molecular mechanisms underlying congenital deafness, comparative transcriptomic profiling and multiple bioinformatics analyses were performed. Results: The YO-PRO-1 assay result showed that in cdh23 deficient embryos, the YO-PRO-1 signal in inner ear and lateral line neuromast hair cells were completely lost. Startle response experiment showed that compared with wide-type, the response to sound stimulation decreased significantly in cdh23 mutant larvae. Comparative transcriptomic showed that the candidate genes such as atp1b2b and myof could affect hearing by regulating ATP production and purine metabolism in a synergetic way with cdh23. RT-qPCR results further confirmed the transcriptomics results. Further compensatory experiment showed that ATP treated cdh23-/- embryos can partially recover the mutant phenotype. Conclusion: In conclusion, our study may shed light on deciphering the principal mechanism and provide a potential therapeutic method for congenital hearing loss under the condition of CDH23 mutation.

19.
J Bone Oncol ; 41: 100493, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37501717

RESUMO

Osteosarcoma (OS) is the most common primary bone cancer in children and young adults, patient survival rates have not improved in recent decades. To further understand the interrelationship between different cell types in the tumor microenvironment of osteosarcoma, we comprehensively analyzed single-cell sequencing data from six patients with untreated osteosarcoma. Nine major cell types were identified from a total of 46,046 cells based on unbiased clustering of gene expression profiles and canonical markers. Osteosarcoma from different patients display heterogeneity in cellular composition. Myeloid cells were the most commonly represented cell type, followed by osteoblastic and TILs. Copy number variation (CNV) results identified amplifications and deletions in malignant osteoblastic cells and fibroblasts. Trajectory analysis based on RNA velocity showed that osteoclasts in the OS microenvironment could be differentiated from myeloid cells. Furthermore, we explored the intercellular communications in OS microenvironment and identified multiple ligand-receptor pairs between myeloid cells, osteoblastic cells and their cells, including 21 ligand-receptor pair genes that significantly associated with survival outcomes. Importantly, we found chemotherapy may have an effect on cellular communication in the OS microenvironment by analyzing single-cell sequencing data from seven primary osteosarcoma patients who received chemotherapy. We believe these observations will improve our understanding of potential mechanisms of microenvironment contributions to OS progression and help identify potential targets for new treatment development in the future.

20.
Antimicrob Agents Chemother ; 67(6): e0002223, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37162345

RESUMO

The emergence of azole-resistant and biofilm-forming Candida spp. contributes to the constantly increasing incidence of vulvovaginal candidiasis. It is imperative to explore new antifungal drugs or potential substituents, such as antimicrobial peptides, to alleviate the serious crisis caused by resistant fungi. In this study, a novel antimicrobial peptide named Scyampcin44-63 was identified in the mud crab Scylla paramamosain. Scyampcin44-63 exhibited broad-spectrum antimicrobial activity against bacteria and fungi, was particularly effective against planktonic and biofilm cells of Candida albicans, and exhibited no cytotoxicity to mammalian cells (HaCaT and RAW264.7) or mouse erythrocytes. Transcriptomic analysis revealed four potential candidacidal modes of Scyampcin44-63, including promotion of apoptosis and autophagy and inhibition of ergosterol biosynthesis and the cell cycle. Further study showed that Scyampcin44-63 caused damage to the plasma membrane and induced apoptosis and cell cycle arrest at G2/M in C. albicans. Scanning and transmission electron microscopy demonstrated that Scyampcin44-63-treated C. albicans cells were deformed with vacuolar expansion and destruction of organelles. In addition, C. albicans cells pretreated with the autophagy inhibitor 3-methyladenine significantly delayed the candidacidal effect of Scyampcin44-63, suggesting that Scyampcin44-63 might contribute to autophagic cell death. In a murine model of vulvovaginal candidiasis, the fungal burden of vaginal lavage was significantly decreased after treatment with Scyampcin44-63.


Assuntos
Braquiúros , Candidíase Vulvovaginal , Humanos , Feminino , Camundongos , Animais , Candidíase Vulvovaginal/tratamento farmacológico , Candidíase Vulvovaginal/microbiologia , Peptídeos Antimicrobianos , Modelos Animais de Doenças , Candida albicans , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA