Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Ecotoxicol Environ Saf ; 276: 116289, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570269

RESUMO

The transmission of manure- and wastewater-borne antibiotic-resistant bacteria (ARB) to plants contributes to the proliferation of antimicrobial resistance in agriculture, necessitating effective strategies for preventing the spread of antibiotic resistance genes (ARGs) from ARB in the environment to humans. Nanomaterials are potential candidates for efficiently controlling the dissemination of ARGs. The present study investigated the abundance of ARGs in hydroponically grown garlic (Allium sativum L.) following nano-CeO2 (nCeO2) application. Specifically, root exposure to nCeO2 (1, 2.5, 5, 10 mg L-1, 18 days) reduced ARG abundance in the endosphere of bulbs and leaves. The accumulation of ARGs (cat, tet, and aph(3')-Ia) in garlic bulbs decreased by 24.2-32.5 % after nCeO2 exposure at 10 mg L-1. Notably, the lignification extent of garlic stem-disc was enhanced by 10 mg L-1 nCeO2, thereby accelerating the formation of an apoplastic barrier to impede the upward transfer of ARG-harboring bacteria to garlic bulbs. Besides, nCeO2 upregulated the gene expression related to alliin biosynthesis and increased allicin content by 15.9-16.2 %, promoting a potent antimicrobial defense for reducing ARG-harboring bacteria. The potential exposure risks associated with ARGs and Ce were evaluated according to the estimated daily intake (EDI). The EDI of ARGs exhibited a decrease exceeding 95 %, while the EDI of Ce remained below the estimated oral reference dose. Consequently, through stimulating physical and chemical defenses, nCeO2 contributed to a reduced EDI of ARGs and Ce, highlighting its potential for controlling ARGs in plant endosphere within the framework of nano-enabled agrotechnology.


Assuntos
Cério , Alho , Alho/genética , Alho/efeitos dos fármacos , Cério/toxicidade , Raízes de Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Folhas de Planta , Antibacterianos/farmacologia , Genes Bacterianos , Farmacorresistência Bacteriana/genética
2.
Nanomaterials (Basel) ; 14(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38668175

RESUMO

Theanine, polyphenols, and caffeine not only affect the flavor of tea, but also play an important role in human health benefits. However, the specific regulatory mechanism of Se NMs on fat-reducing components is still unclear. In this study, the synthesis of fat-reducing components in Fuding Dabai (FDDB) tea was investigated. The results indicated that the 100-bud weight, theanine, EGCG, total catechin, and caffeine contents of tea buds were optimally promoted by 10 mg·L-1 Se NMs in the range of 24.3%, 36.2%, 53.9%, 67.1%, and 30.9%, respectively. Mechanically, Se NMs promoted photosynthesis in tea plants, increased the soluble sugar content in tea leaves (30.3%), and provided energy for the metabolic processes, including the TCA cycle, pyruvate metabolism, amino acid metabolism, and the glutamine/glutamic acid cycle, ultimately increasing the content of amino acids and antioxidant substances (catechins) in tea buds; the relative expressions of key genes for catechin synthesis, CsPAL, CsC4H, CsCHI, CsDFR, CsANS, CsANR, CsLAR, and UGGT, were significantly upregulated by 45.1-619.1%. The expressions of theanine synthesis genes CsTs, CsGs, and CsGOGAT were upregulated by 138.8-693.7%. Moreover, Se NMs promoted more sucrose transfer to the roots, with the upregulations of CsSUT1, CsSUT2, CsSUT3, and CsSWEET1a by 125.8-560.5%. Correspondingly, Se NMs enriched the beneficial rhizosphere microbiota (Roseiarcus, Acidothermus, Acidibacter, Conexicter, and Pedosphaeraceae), enhancing the absorption and utilization of ammonium nitrogen by tea plants, contributing to the accumulation of theanine. This study provides compelling evidence supporting the application of Se NMs in promoting the lipid-reducing components of tea by enhancing its nitrogen metabolism.

3.
BMC Cancer ; 24(1): 268, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408959

RESUMO

BACKGROUND: Gemcitabine is a cornerstone drug for the treatment of all stages of pancreatic cancer and can prolong the survival of patients with pancreatic cancer, but resistance to gemcitabine in pancreatic cancer patients hinders its efficacy. The overexpression of Early growth response 1(EGR1) in pancreatic ductal adenocarcinoma as a mechanism of gemcitabine chemoresistance in pancreatic cancer has not been explored. The major mechanisms of gemcitabine chemoresistance are related to drug uptake, metabolism, and action. One of the common causes of tumor multidrug resistance (MDR) to chemotherapy in cancer cells is that transporter proteins increase intracellular drug efflux and decrease drug concentrations by inducing anti-apoptotic mechanisms. It has been reported that gemcitabine binds to MDR1 with high affinity. The purpose of this research was to investigate the potential mechanisms by which EGR1 associates with MDR1 to regulate gemcitabine resistance in pancreatic cancer cells. METHODS: The following in vitro and in vivo techniques were used in this research to explore the potential mechanisms by which EGR1 binds to MDR1 to regulate gemcitabine resistance in pancreatic cancer cells. Cell culture; in vitro and in vivo study of EGR1 function by loss of function analysis. Binding of EGR1 to the MDR1 promoter was detected using the ChIP assay. qRT-PCR, Western blot assays to detect protein and mRNA expression; use of Annexin V apoptosis detection assay to test apoptosis; CCK8, Edu assay to test cell proliferation viability. The animal model of pancreatic cancer subcutaneous allograft was constructed and the tumours were stained with hematoxylin eosin and Ki-67 expression was detected using immunohistochemistry. FINDINGS: We revealed that EGR1 expression was increased in different pancreatic cancer cell lines compared to normal pancreatic ductal epithelial cells. Moreover, gemcitabine treatment induced upregulation of EGR1 expression in a dose- and time-dependent manner. EGR1 is significantly enriched in the MDR1 promoter sequence.Upon knockdown of EGR1, cell proliferation was impaired in CFPAC-1 and PANC-1 cell lines, apoptosis was enhanced and MDR1 expression was decreased, thereby partially reversing gemcitabine chemoresistance. In animal experiments, knockdown of EGR1 enhanced the inhibitory effect of gemcitabine on tumor growth compared with the sh-NC group. CONCLUSIONS: Our study suggests that EGR1 may be involved in the regulation of MDR1 to enhance gemcitabine resistance in pancreatic cancer cells. EGR1 could be a novel therapeutic target to overcome gemcitabine resistance in pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Gencitabina , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Apoptose , Proteína 1 de Resposta de Crescimento Precoce/genética
4.
J Agric Food Chem ; 72(7): 3397-3405, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38335532

RESUMO

The continued acquisition and propagation of antibiotic resistance genes (ARGs) in the environment confound efforts to manage the global rise in antibiotic resistance. Here, CRISPR-Cas9/sgRNAs carried by nitrogen-doped carbon dots (NCDs) were developed to precisely target multi-"high-risk" ARGs (tet, cat, and aph(3')-Ia) commonly detected in the environment. NCDs facilitated the delivery of Cas9/sgRNAs to Escherichia coli (E. coli) without cytotoxicity, achieving sustained elimination of target ARGs. The elimination was optimized using different weight ratios of NCDs and Cas9 protein (1:1, 1:20, and 1:40), and Cas9/multi sgRNAs were designed to achieve multi-cleavage of ARGs in either a single strain or mixed populations. Importantly, NCDs successfully facilitated Cas9/multi sgRNAs for resensitization of antibiotic-resistant bacteria in soil (approaching 50%), whereas Cas9/multi sgRNAs alone were inactivated in the complex environment. This work highlights the potential of a fast and precise strategy to minimize the reservoir of antibiotic resistance in agricultural system.


Assuntos
Antibacterianos , Sistemas CRISPR-Cas , Antibacterianos/farmacologia , RNA Guia de Sistemas CRISPR-Cas , Escherichia coli/genética
5.
Curr Pharm Des ; 30(3): 230-239, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38243946

RESUMO

BACKGROUND: Artesunate (ART) has been recognized to induce ferroptosis in various tumor phenotypes, including neuroendocrine tumors. We aimed to investigate the effects of ART on insulinoma and the underlying mechanisms by focusing on the process of ferroptosis. METHODS: The CCK8 and colony formation assays were conducted to assess the effectiveness of ART. Lipid peroxidation, glutathione, and intracellular iron content were determined to validate the process of ferroptosis, while ferrostatin-1 (Fer-1) was employed as the inhibitor of ferroptosis. Subcutaneous tumor models were established and treated with ART. The ferroptosis-associated proteins were determined by western blot and immunohistochemistry assays. Pathological structures of the liver were examined by hematoxylin-eosin staining. RESULTS: ART suppressed the growth of insulinoma both in vitro and in vivo. Insulinoma cells treated by ART revealed signs of ferroptosis, including increased lipid peroxidation, diminished glutathione levels, and ascending intracellular iron. Notably, ART-treated insulinoma cells exhibited a decline in the expressions of catalytic component solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4). These alterations were negated by Fer-1. Moreover, no hepatotoxicity was observed upon the therapeutic dose of ART. CONCLUSION: Artesunate might regulate ferroptosis of insulinoma cells through the SLC7A11/GPX4 pathway.


Assuntos
Cicloexilaminas , Ferroptose , Insulinoma , Neoplasias Pancreáticas , Fenilenodiaminas , Humanos , Artesunato , Glutationa , Ferro , Sistema y+ de Transporte de Aminoácidos
6.
Chemosphere ; 344: 140320, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37775052

RESUMO

Agricultural heavy metal contamination can cause significant crop damage, highlighting the urgent need to mitigate its negative effects. Under Cd2+ stress, selenium nanomaterials (Se NMs, 2 mg kg-1) can significantly improve Brassica chinensis L. root growth and vigor, enhance photosynthesis (31.4%), and increase biomass. Se NMs treatment also reduces Brassica chinensis L root and shoot Cd concentration by 67.2 and 72.9%, respectively. This reduction is mainly due to the gene expression of Cd2+ absorption (BcITR1 and BcHMA2) which was down-regulated 51.9 and 67.0% by Se NMs, respectively. Meanwhile, Se NMs can increase the abundance of Cd-resistant microorganisms (Gemmatimonas, RB41, Haliangium, Gaiella, and Steroidobacter) in rhizosphere soil while also reducing Cd migration from soil to plants. Additionally, Se NMs also contribute to reducing ROS accumulation by improving the oxidation-reduction process between GSH and GSSG through enhancing γ-ECS (15.6%), GPx (50.2%) and GR (97.3%) activity. Remarkably, crop Se content can reach 50.8 µg/100 g, which fully meets the standards of Se-rich vegetables. These findings demonstrate the potential of Se NMs in relieving heavy metal stress, while simultaneously increasing crop Se content, making it a promising technology for sustainable agricultural production.


Assuntos
Brassica , Selênio , Poluentes do Solo , Selênio/farmacologia , Selênio/metabolismo , Antioxidantes/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Estresse Oxidativo , Glutationa/metabolismo , Solo , Poluentes do Solo/toxicidade
7.
Sci Total Environ ; 901: 166500, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37619720

RESUMO

To sustainably feed the growing global population, it is essential to increase crop yields on limited land while reducing the use of fertilizers and agrochemicals. The rhizosphere regulation shows significant potential to address this challenge. Here, foliar applied doping of nitrogen in carbon dots (N-CDs) entered maize leaves, and were transported to the stems and roots. The internalized N-CDs significantly increased the biomass (26.4-93.8%) and photosynthesis (17.0-20.3 %) of maize seedling during the three-week application of N-CDs, providing the substrate for tricarboxylic acid cycle (TCA) in shoots and roots. Correspondingly, more organic acids involved in TCA cycle, such as citric acid (14.0-fold), succinic acid (4.4-fold) and malic acid (3.4-fold), were synthesized and then secreted into rhizosphere after exposed to N-CDs for one day. As the exposure time increased, greater secretion of above organic acids by the roots was induced. However, no significant change was observed in the relative abundance of rhizobacteria after foliar application with N-CDs for one day. After one week, the relative abundances of Azotobacter, Bacillus, Lysobacter, Mucilaginibacter, and Sphingomonas increased by 0.8-3.8 folds. The relative abundance of more beneficial rhizobacteria (Sphingomonas, Lysobacter, Rhizobium, Azotobacter, Pseudomonas, Mucilaginibacter and Bacillus) enriched by 0.3-6.0 folds after two weeks, and Sphingomonas, Flavisolibacter and Bacillus improved by 0.6-3.2 folds after three weeks. These dynamic changes suggested that N-CDs initiate the synthesis and secretion of organic acids and then recruited beneficial rhizobacteria. The hierarchical partitioning analysis further indicated that N-CDs-induced secretion of organic acids from the roots was the main drivers of rhizobacteria community dynamics. The differential microbes altered by N-CDs were mainly involved in nitrogen (N) and phosphorus (P) cycles, which are beneficial for N and P uptake, and maize growth. These results provide insights into understanding the rhizosphere regulation of nanomaterials to improve plant productivity and nutrient-use efficiency.

8.
Sci Total Environ ; 901: 165973, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37532034

RESUMO

Carbon dots (CDs)-enabled agriculture has been developing rapidly, but small-scale synthesis and high costs hinder the agricultural application of CDs. Herein, biomass-derived carbon dots (B-CDs) were prepared on a gram-level with low cost, and these B-CDs significantly improved crop photosynthesis. The B-CDs, exhibiting small size and blue fluorescence, were absorbed by crops and enhanced photosynthesis via light-harvesting. Foliar application of B-CDs (10 mg·kg-1) could promote chlorophyll synthesis (30-100 %), Ferredoxin (Fd, 40-80 %), Rubisco enzyme (20-110 %) and upregulated gene expression (20-70 %), resulting in higher net photosynthetic rates (130-300 %), dry biomass (160-300 %) and fresh biomass (80-150 %). Further, the B-CDs could increase crop photosynthesis under nutrient deficient conditions, which was attributed to the release of nutrients from B-CDs. Therefore, the B-CDs enhanced the photosynthesis via enhancing light conversion and nutrient supply. This study provides a promising material capable of enhancing photosynthesis for sustainable agriculture production.

9.
J Colloid Interface Sci ; 649: 703-712, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37385035

RESUMO

Spinel ZnMn2O4 with a three-dimensional channel structure is one of the important cathode materials for aqueous zinc ions batteries (AZIBs). However, like other manganese-based materials, spinel ZnMn2O4 also has problems such as poor conductivity, slow reaction kinetics and structural instability under long cycles. Herein, ZnMn2O4 mesoporous hollow microspheres with metal ion doping were prepared by a simple spray pyrolysis method and applied to the cathode of aqueous zinc ion battery. Cation doping not only introduces defects, changes the electronic structure of the material, improves its conductivity, structural stability, and reaction kinetics, but also weakens the dissolution of Mn2+. The optimized 0.1 % Fe-doped ZnMn2O4 (0.1% Fe-ZnMn2O4) has a capacity of 186.8 mAh g-1 after 250 charge-discharge cycles at 0.5 A g-1 and the discharge specific capacity reaches 121.5 mAh g-1 after 1200 long cycles at 1.0 A g-1. The theoretical calculation results show that doping causes the change of electronic state structure, accelerates the electron transfer rate, and improves the electrochemical performance and stability of the material.

10.
Nanomaterials (Basel) ; 13(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37177029

RESUMO

Strategies to reduce the risk of drought damage are urgently needed as intensified climate change threatens agricultural production. One potential strategy was using nanomaterials (NMs) to enhance plant resistance by regulating various physiological and biochemical processes. In the present study, 10 mg kg-1 manganese ferrite (MnFe2O4) NMs had the optimal enhancement to elevate the levels of biomass, photosynthesis, nutrient elements, and polysaccharide in rice by 10.9-525.0%, respectively, under drought stress. The MnFe2O4 NMs were internalized by rice plants, which provided the possibility for rice to better cope with drought. Furthermore, as compared with drought control and equivalent ion control, the introduction of MnFe2O4 NMs into the roots significantly upregulated the drought-sensing gene CLE25 (29.4%) and the receptor gene NCED3 (59.9%). This activation stimulated downstream abscisic acid, proline, malondialdehyde, and wax biosynthesis by 23.3%, 38.9%, 7.2%, and 26.2%, respectively. In addition, 10 mg·kg-1 MnFe2O4 NMs significantly upregulated the relative expressions of OR1, AUX2, AUX3, PIN1a, and PIN2, and increased IAA content significantly, resulting in an enlarged root angle and a deeper and denser root to help the plant withstand drought stresses. The nutritional quality of rice grains was also improved. Our study provides crucial insight for developing nano-enabled strategies to improve crop productivity and resilience to climate change.

11.
Sci Total Environ ; 878: 163175, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37003329

RESUMO

Maximizing the potential of plant-microbe systems offers great opportunities to confront sustainability issues in agroecosystems. However, the dialog between root exudates and rhizobacteria remains largely unknown. As a novel nanofertilizer, nanomaterials (NMs) have significant potential to improve agricultural productivity due to their unique properties. Here, soil amendment with 0.1 mg·kg-1 selenium (Se) NMs (30-50 nm) significantly promoted rice seedling growth. Differences in root exudates and rhizobacteria were evident. At an earlier time point (3rd week), Se NMs increased the relative content of malic and citric acid by 15.4- and 8.1-fold, respectively. Meanwhile, the relative abundances of Streptomyces and Sphingomonas were increased by 164.6 % and 38.3 %, respectively. As the exposure time increased, succinic acid (40.5-fold) at the 4th week and salicylic acid (4.7-fold) and indole-3-acetic (7.0-fold) at the 5th week were enhanced, while Pseudomonas and Bacillus increased at the 4th (112.3 % and 50.2 %) and 5th weeks (190.8 % and 53.1 %), respectively. Further analysis indicated that (1) Se NMs directly enhanced the synthesis and secretion of malic and citric acids by upregulating their biosynthesis and transporter genes and then recruited Bacillus and Pseudomonas; (2) Se NMs upregulated the chemotaxis and flagellar genes of Sphingomonas for more interaction with rice plants, thereby promoting rice growth and stimulating root exudate secretion. This crosstalk of root exudates and rhizobacteria enhanced nutrient uptake, resulting in promoted rice growth. Our study offers insights into the crosstalk between root exudates and rhizobacteria by NMs and provides new insights into rhizosphere regulation in nano-enabled agriculture.


Assuntos
Bacillus , Oryza , Selênio , Bacillus/fisiologia , Exsudatos e Transudatos , Solo , Raízes de Plantas/microbiologia
12.
Nanomaterials (Basel) ; 13(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36985863

RESUMO

The direct uptake of extracellular DNA (eDNA) via transformation facilitates the dissemination of antibiotic resistance genes (ARGs) in the environment. CeO2 nanoparticles (NPs) have potential in the regulation of conjugation-dominated ARGs propagation, whereas their effects on ARGs transformation remain largely unknown. Here, CeO2 NPs at concentrations lower than 50 mg L-1 have been applied to regulate the transformation of plasmid-borne ARGs to competent Escherichia coli (E. coli) cells. Three types of exposure systems were established to optimize the regulation efficiency. Pre-incubation of competent E. coli cells with CeO2 NPs at 0.5 mg L-1 inhibited the transformation (35.4%) by reducing the ROS content (0.9-fold) and cell membrane permeability (0.9-fold), thereby down-regulating the expression of genes related to DNA uptake and processing (bhsA, ybaV, and nfsB, 0.7-0.8 folds). Importantly, CeO2 NPs exhibited an excellent binding capacity with the plasmids, decreasing the amounts of plasmids available for cellular uptake and down-regulating the gene expression of DNA uptake (bhsA, ybaV, and recJ, 0.6-0.7 folds). Altogether, pre-exposure of plasmids with CeO2 NPs (10 and 25 mg L-1) suppressed the transformation with an efficiency of 44.5-51.6%. This study provides a nano-strategy for controlling the transformation of ARGs, improving our understanding on the mechanisms of nanomaterial-mediated ARGs propagation.

13.
BMC Cancer ; 23(1): 263, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949454

RESUMO

BACKGROUND: Zinc finger and BTB domain-containing protein 4 (ZBTB4) belongs to the zinc finger protein family, which has a role in regulating epigenetic inheritance and is associated with cell differentiation and proliferation. Previous studies have identified aberrant ZBTB4 expression in cancer and its ability to modulate disease progression, but studies on the immune microenvironment, immunotherapy and its role in cancer are still lacking. METHODS: Human pan-cancer and normal tissue transcriptome data were obtained from The Cancer Genome Atlas. The pan-cancer genomic alteration landscape of ZBTB4 was investigated with the online tool. The Kaplan-Meier method was used to evaluate the prognostic significance of ZBTB4 in pancreatic cancer. In parallel, ZBTB4 interacting molecules and potential functions were analyzed by co-expression and the correlation between ZBTB4 and immune cell infiltration, immune modulatory cells and efficacy of immune checkpoint therapy was explored. Next, we retrieved the Gene Expression Omnibus database expression datasets of ZBTB4 and investigated ZBTB4 expression and clinical significance in pancreatic cancer by immunohistochemical staining experiments. Finally, cell experiments were performed to investigate changes in pancreatic cancer cell proliferation, migration and invasion following overexpression and knockdown of ZBTB4. FINDINGS: ZBTB4 showed loss of expression in the majority of tumors and possessed the ability to predict cancer prognosis. ZBTB4 was closely related to the tumor immune microenvironment, immune cell infiltration and immunotherapy efficacy. ZBTB4 had good diagnostic performance for pancreatic cancer in the clinic, and ZBTB4 protein expression was lost in pancreatic cancer tumor tissues. Cell experiments revealed that overexpression of ZBTB4 inhibited the proliferation, migration and invasion of pancreatic cancer cells, while silencing ZBTB4 showed the opposite effect. CONCLUSIONS: According to our results, ZBTB4 is present in pancreatic cancer with aberrant expression and is associated with an altered immune microenvironment. We show that ZBTB4 is a promising marker for cancer immunotherapy and cancer prognosis and has the potential to influence pancreatic cancer progression.


Assuntos
Processos Neoplásicos , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Biomarcadores , Proliferação de Células/genética , Microambiente Tumoral/genética , Prognóstico , Proteínas Repressoras , Neoplasias Pancreáticas
14.
NanoImpact ; 29: 100449, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610662

RESUMO

Macro- or micro-nutrients are essential for crop yield and nutritional quality. In this work, selenium engineering nanomaterials (Se ENMs, 0.5 mg‧kg-1) significantly increased the yield and nutritional quality of lettuce, which was better than that of selenite (Na2SeO3). Under the treatment of Se ENMs, macro-nutrients including nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) were increased by 15.8%, 98.5%, 42.8%, 146.9%, and 62.5%, respectively, and micro-nutrients including manganese (Mn), iron (Fe), copper (Cu), and zinc (Zn) were also increased by 87.4%, 78.0%, 61.1%, and 56.1%, respectively. As a result, the improved nutritional status of lettuce leaves increased photosynthesis (59.2%) and yield (37.6%). Root diameters and root tips of lettuce were increased by 23.9% and 18.6%, respectively, upon exposure to Se ENMs, which may be responsible for facilitating the absorption of macro and micro nutrients from the soil. These effects were significantly better than SeO32- treated group. Metabolome results indicated that Se ENMs could improve the shikimic acid, phenylalanine, and tyrosine pathway, resulting in an enhancement of the beneficial compounds, including quercetin, rutin, and coumarin, by 2.9, 2.7, and 2.4-fold, respectively. Besides, pyruvic acid and TCA cycle were also improved by Se ENMs. These results provide new insight into the positive effect of Se ENMs on crop yield and nutritional quality, which demonstrate that the Se ENMs-enabled agriculture practices have a promising prospect as a sustainable crop strategy.


Assuntos
Nanoestruturas , Selênio , Selênio/metabolismo , Lactuca , Fotossíntese , Nutrientes
15.
Dis Markers ; 2023: 5145152, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36712921

RESUMO

Objective: We aimed to identify differentially expressed proteins in the plasma of patients with pancreatic cancer and control subjects, which could serve as potential tumor biomarkers. Methods: Differentially expressed proteins were determined via isostatic labeling and absolute quantification (iTRAQ). Potential protein biomarkers were identified via enzyme-linked immunosorbent assay (ELISA) in 40 patients and 40 control subjects, and those eventually selected were further validated in 40 pancreatic cancer and normal pancreatic tissues. Results: In total, 30 proteins displayed significant differences in expression among which 21 were downregulated and 9 were upregulated compared with the control group. ELISA revealed downregulation of peroxiredoxin-2 (PRDX2) and upregulation of alpha-1-antitrypsin (AAT), Ras-related protein Rab-2B (RAB2B), insulin-like growth factor-binding protein 2 (IGFBP2), Rho-related GTP-binding protein RhoC (RHOC), and prelamin-A/C (LMNA) proteins in 40 other samples of pancreatic cancer. Notably, only AAT, RAB2B, and IGFBP2 levels were consistent with expression patterns obtained with iTRAQ. Moreover, all three proteins displayed a marked increase in pancreatic cancer tissues. Data from ROC curve analysis indicated that the diagnostic ability of AAT, RAB2B, and IGFBP2 combined with carbohydrate antigen 19-9 (CA19-9) for pancreatic cancer was significantly greater than that of the single indexes (area under the curve (AUC): 90% vs. 75% (CA19-9), 76% (AAT), 71% (RAB2B), and 71% (IGFBP2), all P < 0.01). Conclusion: AAT, RAB2B, and IGFBP2 could serve as effective biomarkers to facilitate the early diagnosis of pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Antígeno CA-19-9 , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/patologia , Biomarcadores Tumorais/metabolismo , Proteínas Sanguíneas , Neoplasias Pancreáticas
16.
Chem Commun (Camb) ; 59(3): 298-301, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36507902

RESUMO

In this work, we introduce Fe and Ni into Co-MOF to construct a kind of multicomponent phosphide hollow architecture with walls assembled by nanosheets. The multicomponent nature can enhance the intrinsic catalytic activity, while the sheet-like surface and inter-sheet voids provide a large active area, which is beneficial for electrolyte penetration and gas generation. As expected, the optimized product has catalytic hydrogen evolution reaction (HER) overpotentials of 105 and 161 mV at current densities of 10 and 100 mA cm-2, respectively, and maintained long-term stability for over 100 hours at 10 mA cm-2 current densities.

17.
Sci Total Environ ; 863: 160900, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36526192

RESUMO

A multifunctional nanomaterials-based agrochemical delivery system could supply a powerful tool for the efficient use of pesticides. Redox-responsive carriers as novel delivery systems of pesticide application in agriculture could promote the pest control and reduce plant pesticide residues due to the controllable release of agrochemicals. Herein, neonicotinoid insecticide acetamiprid (Ace) was encapsulated with decanethiol in a mesoporous silica nanocarrier pesticide delivery system for a nanopesticide Ace@MSN-SS-C10. The Ace@MSN-SS-C10 had redox-responsive sustained release behavior triggered by glutathione (GSH). Moreover, the Ace@MSN-SS-C10 possessed excellent wettability, adhesion performance, stability, and biosafety. Greenhouse experiments showed that foliar spraying 1.5 mg Ace@MSN-SS-C10 per plant reduced the populations of adult and juvenile aphids (Aphis craccivora Koch) on Vicia faba L. after 5 days of aphid infestation by 98.7 % and 99.3 %, respectively. Notably, the leaf final Ace residue (0.32 ± 0.004 mg/kg) of Ace@MSN-SS-C10 application at the dose of 1.5 mg/plant after 5 days of aphid infestation was lower than the international Codex Alimentarius Commission (CAC) maximum residue limits (0.4 mg·kg-1) or much lower (24.87-folds decrease) than those treated with conventional Ace (40 % acetamiprid water dispersible granule). Altogether, this GSH-dependent redox-responsive delivery system for loading acetamiprid can develop as an efficient and environmentally-friendly nanopesticide to control aphids in sustainable agriculture.


Assuntos
Afídeos , Nanopartículas , Resíduos de Praguicidas , Praguicidas , Animais , Dióxido de Silício/química , Neonicotinoides , Agroquímicos , Nanopartículas/química , Porosidade
18.
Sci Total Environ ; 856(Pt 1): 159125, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36181808

RESUMO

With global warming and water scarcity, improving the drought tolerance and quality of crops is critical for food security and human health. Here, foliar application of carbon dots (CDs, 5 mg·L-1) could scavenge reactive oxygen species accumulation in soybean leaves under drought stress, thereby enhancing photosynthesis and carbohydrate transport. Moreover, CDs stimulated root secretion (e.g., amino acids, organic acids, and auxins) and recruited beneficial microorganisms (e.g., Actinobacteria, Ascomycota, Acidobacteria and Glomeromycota), which facilitate nitrogen (N) activation in the soil. Meanwhile, the expression of GmNRT, GmAMT, and GmAQP genes were up-regulated, indicating enhanced N and water uptake. The results demonstrated that CDs could promote nitrogen metabolism and enhance amino acid biosynthesis. Particularly, the N content in soybean shoots and roots increased significantly by 13.2 % and 30.5 %, respectively. The amino acids content in soybean shoots and roots increased by 257.5 % and 57.5 %, respectively. Consequently, soybean yields increased significantly by 21.5 %, and the protein content in soybean kernels improved by 3.7 %. Therefore, foliar application of CDs can support sustainable nano-enabled agriculture to combat climate change.


Assuntos
Secas , Fabaceae , Humanos , Glycine max/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Carbono/metabolismo , Fotossíntese , Fabaceae/metabolismo , Aminoácidos/metabolismo , Nitrogênio/metabolismo , Estresse Fisiológico
19.
ACS Nano ; 16(12): 21047-21062, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36479882

RESUMO

Innovative technology to increase efficient nitrogen (N) use while avoiding environmental damages is needed because of the increasing food demand of the rapidly growing global population. Soybean (Glycine max) has evolved a complex symbiosis with N-fixing bacteria that forms nodules to fix N. Herein, foliar application of 10 mg L-1 Fe7(PO4)6 and Fe3O4 nanomaterials (NMs) (Fe-based NMs) promoted soybean growth and root nodulation, thus improving the yield and quality over that of the unexposed control, EDTA-control, and 1 and 5 mg L-1 NMs. Mechanistically, flavonoids, key signaling molecules at the initial signaling steps in nodulation, were increased by more than 20% upon exposure to 10 mg L-1 Fe-based NMs, due to enhanced key enzyme (phenylalanine ammonia-lyase, PAL) activity and up-regulation of flavonoid biosynthetic genes (GmPAL, GmC4H, Gm4CL, and GmCHS). Accumulated flavonoids were secreted to the rhizosphere, recruiting rhizobia for colonization. Fe7(PO4)6 NMs increased Allorhizobium by 87.3%, and Fe3O4 NMs increased Allorhizobium and Mesorhizobium by 142.2% and 34.9%, leading to increased root nodules by 50.0% and 35.4% over the unexposed control, respectively. Leghemoglobin content was also noticeably improved by 8.2-46.5% upon Fe-based NMs. The higher levels of nodule number and leghemoglobin content resulted in enhanced N content by 15.5-181.2% during the whole growth period. Finally, the yield (pod number and grain biomass) and quality (flavonoids, soluble protein, and elemental nutrients) were significantly increased more than 14% by Fe-based NMs. Our study provides an effective nanoenabled strategy for inducing root nodules to increase N use efficiency, and then both yield and quality of soybean.


Assuntos
Fixação de Nitrogênio , Nodulação , Nodulação/genética , Glycine max/metabolismo , Leghemoglobina/metabolismo , Flavonoides/farmacologia , Flavonoides/metabolismo
20.
NanoImpact ; 28: 100429, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36130713

RESUMO

The use of in silico tools to investigate the interactions between metal (oxide) nanoparticles (NPs) and plant biological responses is preferred because it allows us to understand molecular mechanisms and improve prediction efficiency by saving time, labor, and cost. In this study, four models (C5.0 decision tree, discriminant function analysis, random forest, and stepwise multiple linear regression analysis) were applied to predict the effect of NPs on rice biomass and yield. Nano-specific descriptors (size-dependent molecular descriptors and image-based descriptors) were introduced to estimate the behavior of NPs in plants to appropriately represent the wide space of NPs. The results showed that size-dependent molecular descriptors (e.g., E-state and connectivity indices) and image-based descriptors (e.g., extension, area, and minimum ferret diameter) were associated with the behavior of NPs in rice. The performance of the constructed models was within acceptable ranges (correlation coefficient ranged from 0.752 to 0.847 for biomass and from 0.803 to 0.905 for yield, while the accuracy ranged from 64% to 77% for biomass and 81% to 89% for yield). The developed model can be used to quickly and efficiently evaluate the impact of NPs under a wide range of experimental conditions and sufficient training data.


Assuntos
Oryza , Óxidos , Animais , Furões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA