Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain Struct Funct ; 228(1): 305-319, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35907987

RESUMO

The role of angular gyrus (AG) in arithmetic processing remains a subject of debate. In the present study, we recorded from the AG, supramarginal gyrus (SMG), intraparietal sulcus (IPS), and superior parietal lobule (SPL) across 467 sites in 30 subjects performing addition or multiplication with digits or number words. We measured the power of high-frequency-broadband (HFB) signal, a surrogate marker for regional cortical engagement, and used single-subject anatomical boundaries to define the location of each recording site. Our recordings revealed the lowest proportion of sites with activation or deactivation within the AG compared to other subregions of the inferior parietal cortex during arithmetic processing. The few activated AG sites were mostly located at the border zones between AG and IPS, or AG and SMG. Additionally, we found that AG sites were more deactivated in trials with fast compared to slow response times. The increase or decrease of HFB within specific AG sites was the same when arithmetic trials were presented with number words versus digits and during multiplication as well as addition trials. Based on our findings, we conclude that the prior neuroimaging findings of so-called activations in the AG during arithmetic processing could have been due to group-based analyses that might have blurred the individual anatomical boundaries of AG or the subtractive nature of the neuroimaging methods in which lesser deactivations compared to the control condition have been interpreted as "activations". Our findings offer a new perspective with electrophysiological data about the engagement of AG during arithmetic processing.


Assuntos
Conceitos Matemáticos , Resolução de Problemas , Humanos , Resolução de Problemas/fisiologia , Lobo Parietal/fisiologia , Tempo de Reação/fisiologia , Mapeamento Encefálico , Imageamento por Ressonância Magnética
2.
Brain Stimul ; 15(3): 615-623, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35413481

RESUMO

BACKGROUND: Stimulation of the ventromedial hypothalamic region in animals has been reported to cause attack behavior labeled as sham-rage without offering information about the internal affective state of the animal being stimulated. OBJECTIVE: To examine the causal effect of electrical stimulation near the ventromedial region of the human hypothalamus on the human subjective experience and map the electrophysiological connectivity of the hypothalamus with other brain regions. METHODS: We examined a patient (Subject S20_150) with intracranial electrodes implanted across 170 brain regions, including the hypothalamus. We combined direct electrical stimulation with tractography, cortico-cortical evoked potentials (CCEP), and functional connectivity using resting state intracranial electroencephalography (EEG). RESULTS: Recordings in the hypothalamus did not reveal any epileptic abnormalities. Electrical stimulations near the ventromedial hypothalamus induced profound shame, sadness, and fear but not rage or anger. When repeated single-pulse stimulations were delivered to the hypothalamus, significant responses were evoked in the amygdala, hippocampus, ventromedial-prefrontal and orbitofrontal cortices, anterior cingulate, as well as ventral-anterior and dorsal-posterior insula. The time to first peak of these evoked responses varied and earliest propagations correlated best with the measures of resting-state EEG connectivity and structural connectivity. CONCLUSION: This patient's case offers details about the affective state induced by the stimulation of the human hypothalamus and provides causal evidence relevant to current theories of emotion. The complexity of affective state induced by the stimulation of the hypothalamus and the profile of hypothalamic electrophysiological connectivity suggest that the hypothalamus and its connected structures ought to be seen as causally important for human affective experience.


Assuntos
Mapeamento Encefálico , Potenciais Evocados , Estimulação Elétrica , Emoções/fisiologia , Potenciais Evocados/fisiologia , Humanos , Hipotálamo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA