Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 98(7): 1009, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30708861

RESUMO

Cherry is widely planted in China, from Liaoning, Beijing, Hebei, Shandong, Zhejiang, Jiangsu, and Anhui provinces (eastern China), to Shaanxi, Sichuan, Chongqing, and Guizhou provinces (western China). The brown rot fungus Monilinia fructigena causes considerable production losses in cherry production in Liaoning Province (3). In May 2013, Chinese sour cherry (Prunus pseudocerasus) cv. Wupi displaying symptoms of brown rot was found in an orchard in Chongqing municipality. Diseased cherry fruit had a brown rot sporulating with grayish, conidial tufts. The fruit later succumbed to the soft rot or shivered and became a mummy. Single-spore isolations on PDA resulted in colonies with concentric rings of pigmented mycelium with lobbed margins. Conidia were broadly ellipsoid to subglobose, occasionally even globose, with an average size of 16 × 12.7 µm. Multiple germ tubes were produced from each conidium, a germination pattern unique to Monilia mumecola (1,2,4). The pathogen identity was confirmed by multiplex PCR as described by Hu et al. (2). The PCR resulted in a 712-bp amplicon, which is diagnostic of M. mumecola. Further sequencing of the internal transcribed spacer (ITS) region 1 and 2 and 5.8S gene further indicated 100% identity with that of M. mumecola isolates from China (Accession No. HQ908786) and from Japan (AB125613, AB125614, and AB125620). Koch's postulates were confirmed by inoculating mature cherry fruit with mycelia plugs. Inoculated fruit were placed in a sterilized moist chamber, and incubated at 22°C with 12 h light/dark cycle. Inoculated fruit developed typical brown rot symptoms only 2 days after inoculation, while the control fruit, inoculated with a sterile PDA plug, remained healthy. The pathogen isolated from inoculated symptomatic fruit was confirmed to be M. mumecola based on morphological characteristics and germination pattern. It should be noted that the conidia on inoculated fruit showed an average size of 20 × 15.3 µm, significantly bigger than that of from PDA, and most produced more than three germ tubes. The inoculation experiments were performed in triplicates. M. mumecola was first reported as the causal agent of brown rot of mume in Japan in 2004 (1). Later studies demonstrated that it is also pathogen on other stone fruits, e.g., peach, nectarine (2), and apricot (4). To our knowledge, this is the first report of cherry brown fruit rot caused by M. mumecola, and the first report of M. mumecola in Chongqing municipality. References: (1) Y. Harada et al. J. Gen. Plant Pathol. 70:297, 2004. (2) M. J. Hu et al. Plos One 6(9): e24990, 2011. (3) Z. H. Liu et al. J. Fruit Sci. 29:423, 2012. (4) L. F. Yin et al. Plant Dis. 98:694, 2014.

2.
Transl Psychiatry ; 2: e119, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22832964

RESUMO

The identification and exploration of genetic loci that influence smoking behaviors have been conducted primarily in populations of the European ancestry. Here we report results of the first genome-wide association study meta-analysis of smoking behavior in African Americans in the Study of Tobacco in Minority Populations Genetics Consortium (n = 32,389). We identified one non-coding single-nucleotide polymorphism (SNP; rs2036527[A]) on chromosome 15q25.1 associated with smoking quantity (cigarettes per day), which exceeded genome-wide significance (ß = 0.040, s.e. = 0.007, P = 1.84 × 10(-8)). This variant is present in the 5'-distal enhancer region of the CHRNA5 gene and defines the primary index signal reported in studies of the European ancestry. No other SNP reached genome-wide significance for smoking initiation (SI, ever vs never smoking), age of SI, or smoking cessation (SC, former vs current smoking). Informative associations that approached genome-wide significance included three modestly correlated variants, at 15q25.1 within PSMA4, CHRNA5 and CHRNA3 for smoking quantity, which are associated with a second signal previously reported in studies in European ancestry populations, and a signal represented by three SNPs in the SPOCK2 gene on chr10q22.1. The association at 15q25.1 confirms this region as an important susceptibility locus for smoking quantity in men and women of African ancestry. Larger studies will be needed to validate the suggestive loci that did not reach genome-wide significance and further elucidate the contribution of genetic variation to disparities in cigarette consumption, SC and smoking-attributable disease between African Americans and European Americans.


Assuntos
Negro ou Afro-Americano/genética , Fumar/genética , Adulto , Idoso , Cromossomos Humanos Par 10/genética , Cromossomos Humanos Par 15/genética , Feminino , Loci Gênicos/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Proteoglicanas/genética , Receptores Nicotínicos/genética , Estatística como Assunto
3.
Mol Psychiatry ; 11(2): 214-20, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16189504

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental syndrome marked by impairments in social interactive functioning and communication skills, and the presence of repetitive and restrictive behaviors. Twin and linkage studies provide evidence that ASD is heritable and genetically complex. Genetic analyses of familial quantitative traits in those with ASD may help to reveal underlying risk genes. We report a quantitative trait locus (QTL) analysis of nonverbal communication (NVC) in 228 families from the autism genetics resource exchange (AGRE) ascertained for at least two siblings with ASD. QTL at 1p13-q12, 4q21-25, 7q35, 8q23-24, and 16p12-13 indicate that genes at these loci may contribute to the variation in NVC among those with ASD. Using the criteria of Lander and Kruglyak, the QTL at 1p13-q12 is 'suggestive', while the other four are 'possible'. To assess whether these QTL are likely to harbor genes contributing specifically to the deficits in NVC, linkage analysis of ASD sibships with the most severe NVC scores was conducted. The sibships were identified by ordered-subset analyses (OSA), and families with the most severe NVC scores displayed lod scores of 3.4 at 8q23-24 and 3.8 at 16p12-13, indicating that these two regions are likely to harbor gene(s) contributing to ASD by predisposing to deficits in NVC.


Assuntos
Transtorno Autístico/genética , Cromossomos Humanos/genética , Predisposição Genética para Doença/genética , Comunicação não Verbal/fisiologia , Locos de Características Quantitativas/genética , Adolescente , Criança , Pré-Escolar , Mapeamento Cromossômico , Humanos , Linhagem , Índice de Gravidade de Doença , Irmãos
4.
Br J Cancer ; 83(7): 892-8, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10970691

RESUMO

Single-step selection with vinblastine was performed in populations of the human sarcoma cell line MES-SA, to assess cellular mechanisms of resistance to the drug and mutation rates via fluctuation analysis. At a stringent selection with 20 nM vinblastine, resulting in 5-6 logs of cell killing, the mutation rate was 7 x 10(-7)per cell generation. Analysis of variance supported the hypothesis of spontaneous mutations conferring vinblastine resistance, rather than induction of adaptive response elements. Surviving clones displayed a stable multidrug resistance phenotype over a 3-month period. All propagated clones demonstrated high levels of resistance to vinblastine and paclitaxel, and lower cross-resistance to doxorubicin and etoposide. Activation of MDR 1 gene expression and P-glycoprotein function was demonstrable in all clones. No elevation was found in the expression of the mrp gene, the LRP-56 major vault protein and beta-tubulin isotypes (M40, beta4, 5beta, and beta9) in these mutants. We conclude that initial-step resistant mechanism in these vinblastine-selected mutants commonly arises from a stochastic mutation event with activation of the MDR 1 gene.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Antineoplásicos Fitogênicos/farmacologia , Resistência a Múltiplos Medicamentos/genética , Genes MDR/genética , Vimblastina/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/biossíntese , Transportadores de Cassetes de Ligação de ATP/genética , Antineoplásicos Fitogênicos/farmacocinética , Ciclosporinas/farmacologia , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Etoposídeo/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Mutação , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Paclitaxel/farmacologia , Fenótipo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Rodamina 123/farmacocinética , Sarcoma/tratamento farmacológico , Sarcoma/genética , Sarcoma/metabolismo , Trítio , Células Tumorais Cultivadas , Neoplasias Uterinas/tratamento farmacológico , Neoplasias Uterinas/genética , Neoplasias Uterinas/metabolismo , Partículas de Ribonucleoproteínas em Forma de Abóbada/biossíntese , Partículas de Ribonucleoproteínas em Forma de Abóbada/genética , Vimblastina/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA